Loading…

Variation of glucosinolates in vegetable crops of Brassica oleracea

Glucosinolates were evaluated in 5 groups and 65 accessions of Brassica oleracea (50 broccoli, 4 Brussels sprouts, 6 cabbage, 3 cauliflower, and 2 kale) grown under uniform cultural conditions. Glucosinolates and their concentrations varied among the different groups and within each group. The predo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 1999-04, Vol.47 (4), p.1541-1548
Main Authors: Kushad, M.M, Brown, A.F, Kurilich, A.C, Juvik, J.A, Klein, B.P, Wallig, M.A, Jeffery, E.H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glucosinolates were evaluated in 5 groups and 65 accessions of Brassica oleracea (50 broccoli, 4 Brussels sprouts, 6 cabbage, 3 cauliflower, and 2 kale) grown under uniform cultural conditions. Glucosinolates and their concentrations varied among the different groups and within each group. The predominant glucosinolates in broccoli were 4-methylsulfinylbutyl glucosinolate (glucoraphanin), 3-butenyl glucosinolate (gluconapin), and 3-indolylmethyl glucosinoate (glucobrassicin). Glucoraphanin concentration in broccoli ranged from 0.8 micromol g(-1) DW in EV6-1 to 21.7 micromol g(-1) DW in Brigadier. Concentrations of the other glucosinolates in broccoli varied similarly over a wide range. In Brussels sprouts, cabbage, cauliflower, and kale, the predominant glucosinolates were sinigrin (8.9, 7.8, 9.3, and 10.4 micromol g(-1) DW, respectively) and glucobrassicin (3.2, 0.9, 1.3, and 1.2 micromol g(-1) DW, respectively). Brussels sprouts also had significant amounts of gluconapin (6.9 micromol g(-1) DW). Wide variations in glucosinolate content among genotypes suggest differences in their health-promoting properties and the opportunity for enhancement of their levels through genetic manipulation.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf980985s