Loading…

Hydrolysis of phosphates, esters and related substrates by models of biological catalysts

Why study hydrolases, and why model them? First, hydrolases themselves are of fundamental importance and utility. Examples of their utility in organic synthesis include kinetic resolutions of optical isomers. Restriction endonucleases (DNA hydrolases) are key tools for biotechnology and are vital bi...

Full description

Saved in:
Bibliographic Details
Published in:Current Opinion in Chemical Biology 1999-12, Vol.3 (6), p.752-758
Main Author: Bashkin, James K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Why study hydrolases, and why model them? First, hydrolases themselves are of fundamental importance and utility. Examples of their utility in organic synthesis include kinetic resolutions of optical isomers. Restriction endonucleases (DNA hydrolases) are key tools for biotechnology and are vital biological catalysts. Peptidases are necessary for protein digestion and can be harnessed to perform the reverse reaction (peptide synthesis). Thus, for these and many other reasons, hydrolases receive the attention of fundamental and applied research. Models of hydrolases can contribute to our understanding of reaction mechanisms and may also supplant the enzymes as useful catalysts under some conditions. Altering or even increasing the specificity of natural catalysts are also goals of these model studies.
ISSN:1367-5931
1879-0402
DOI:10.1016/S1367-5931(99)00036-8