Loading…

Outflow Boundary Conditions for Arterial Networks with Multiple Outlets

Simulation of blood flow in three-dimensional geometrically complex arterial networks involves many inlets and outlets and requires large-scale parallel computing. It should be based on physiologically correct boundary conditions, which are accurate, robust, and simple to implement in the parallel f...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering 2008-09, Vol.36 (9), p.1496-1514
Main Authors: Grinberg, Leopold, Karniadakis, George Em
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Simulation of blood flow in three-dimensional geometrically complex arterial networks involves many inlets and outlets and requires large-scale parallel computing. It should be based on physiologically correct boundary conditions, which are accurate, robust, and simple to implement in the parallel framework. While a secondary closure problem can be solved to provide approximate outflow conditions, it is preferable, when possible, to impose the clinically measured flow rates. We have developed a new method to incorporate such measurements at multiple outlets, based on a time-dependent resistance boundary condition for the pressure in conjunction with a Neumann boundary condition for the velocity. Convergence of the numerical solution for the specified outlet flow rates is achieved very fast at a computational complexity comparable to the widely used Resistance or Windkessel boundary conditions. The method is verified using a patient-specific cranial vascular network involving 20 arteries and 10 outlets.
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-008-9527-7