Loading…
Shock Wave Induced Decomposition of RDX: Time-Resolved Spectroscopy
Time-resolved optical spectroscopy was used to examine chemical decomposition of RDX crystals shocked along the [111] orientation to peak stresses between 7 and 20 GPa. Shock-induced emission, produced by decomposition intermediates, was observed over a broad spectral range from 350 to 850 nm. A thr...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2008-08, Vol.112 (32), p.7374-7382 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Time-resolved optical spectroscopy was used to examine chemical decomposition of RDX crystals shocked along the [111] orientation to peak stresses between 7 and 20 GPa. Shock-induced emission, produced by decomposition intermediates, was observed over a broad spectral range from 350 to 850 nm. A threshold in the emission response of RDX was found at about 10 GPa peak stress. Below this threshold, the emission spectrum remained unchanged during shock compression. Above 10 GPa, the emission spectrum changed with a long wavelength component dominating the spectrum. The long wavelength emission is attributed to the formation of NO2 radicals. Above the 10 GPa threshold, the spectrally integrated intensity increased significantly, suggesting the acceleration of chemical decomposition. This acceleration is attributed to bimolecular reactions between unreacted RDX and free radicals. These results provide a significant experimental foundation for further development of a decomposition mechanism for shocked RDX (following paper in this issue). |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp800827b |