Loading…

Distribution and evolution of mobile elements in the virilis species group of Drosophila

The distributions of Penelope and Ulysses, two transposable elements that can induce hybrid dysgenesis, were studied in several species groups of Drosophila. No significant hybridization to Penelope and Ulysses probes was detected by Southern blot analyses of species outside the virilis group. In co...

Full description

Saved in:
Bibliographic Details
Published in:Chromosoma 1999-12, Vol.108 (7), p.443-456
Main Authors: Zelentsova, H, Poluectova, H, Mnjoian, L, Lyozin, G, Veleikodvorskaja, V, Zhivotovsky, L, Kidwell, M.G, Evgen'ev, M.B
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The distributions of Penelope and Ulysses, two transposable elements that can induce hybrid dysgenesis, were studied in several species groups of Drosophila. No significant hybridization to Penelope and Ulysses probes was detected by Southern blot analyses of species outside the virilis group. In contrast, both element families have had a long residence in all species of the virilis species group, as indicated by their strong presence in the heterochromatic chromocenter. Except for D. kanekoi, D. lummei, and some strains of D. virilis, species of the group carry full-sized, and at least potentially functional, copies of both element families. Consistent with the occurrence of recent transposition, Penelope and Ulysses elements are located at different chromosomal sites in different geographical strains of the same species. A total of 79 Penelope and 47 Ulysses euchromatic insertion sites were localized to chromosomal subsections in species of the virilis group. Highly significant deviations from independence of the distributions of Penelope and Ulysses and previously established inversion breakpoints were documented, suggesting that these transposable elements may have played an important role in genomic reorganization and evolution of the virilis species group, which is especially rich in karyotypic variation.
ISSN:0009-5915
1432-0886
DOI:10.1007/s004120050396