Loading…

Effects of anion channel blockers on hyposmotically induced amino acid release from the in vivo rat cerebral cortex

A cortical cup model with continuous perfusion of artificial cerebrospinal fluid (containing 134 mM NaCl) was used to investigate the effects of anion channel blockers on the hyposmotically-induced release of amino acids from the in vivo rat cerebral cortex. The hyposmotic stimulus (25 mM NaCl) evok...

Full description

Saved in:
Bibliographic Details
Published in:Neurochemical research 1999-03, Vol.24 (3), p.447-452
Main Authors: ESTEVEZ, A. Y, O'REGAN, M. H, DEKUN SONG, PHILLIS, J. W
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A cortical cup model with continuous perfusion of artificial cerebrospinal fluid (containing 134 mM NaCl) was used to investigate the effects of anion channel blockers on the hyposmotically-induced release of amino acids from the in vivo rat cerebral cortex. The hyposmotic stimulus (25 mM NaCl) evoked a release of taurine, glutamate, aspartate, glycine, phosphoethanolamine and GABA. Topically applied anion channel blockers 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (1 mM); 4-acetamido-4'-isothiocyanatostilbene-2,2-disulfonic acid (2 mM); 5-nitro-2-(3-phenylpropylamino) benzoic acid (350 microM); niflumic acid (500 microM); tamoxifen (20 microM) and arachidonic acid (0.5 microM) all significantly reduced the hyposmotically-induced release of taurine. The releases of glutamate, aspartate, glycine, phosphoethanolamine and GABA were variably susceptible to inhibition by these compounds. These results demonstrate that osmoregulatory processes in cortical cells, in vivo, involve amino acids, with taurine playing a dominant role. The efflux of taurine and, to a lesser extent, the other amino acids may be mediated by anion channels.
ISSN:0364-3190
1573-6903
DOI:10.1023/A:1020902104056