Loading…

Chemical reactions on rutile TiO2(110)

Understanding the surface chemistry of TiO2 is key to the development and optimisation of many technologies, such as solar power, catalysis, gas sensing, medical implantation, and corrosion protection. In order to address this, considerable research effort has been directed at model single crystal s...

Full description

Saved in:
Bibliographic Details
Published in:Chemical Society reviews 2008-10, Vol.37 (10), p.2328-2353
Main Authors: Lun Pang, Chi, Lindsay, Robert, Thornton, Geoff
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the surface chemistry of TiO2 is key to the development and optimisation of many technologies, such as solar power, catalysis, gas sensing, medical implantation, and corrosion protection. In order to address this, considerable research effort has been directed at model single crystal surfaces of TiO2. Particular attention has been given to the rutile TiO2(110) surface because it is the most stable face of TiO2. In this critical review, we discuss the chemical reactivity of TiO2(110), focusing in detail on four molecules/classes of molecules. The selected molecules are water, oxygen, carboxylic acids, and alcohols-all of which have importance not only to industry but also in nature (173 references).
ISSN:0306-0012
1460-4744
DOI:10.1039/b719085a