Loading…

Transglutaminase cross-linking properties of the small proline-rich 1 family of cornified cell envelope proteins. Integration with loricrin

Small proline-rich 1 (SPR1) proteins are important for barrier function in stratified squamous epithelia. To explore their properties, we expressed in bacteria a recombinant human SPR1 protein and isolated native SPR1 proteins from cultured mouse keratinocytes. By circular dichroism, they possess no...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1999-03, Vol.274 (11), p.7226-7237
Main Authors: Candi, E, Tarcsa, E, Idler, W W, Kartasova, T, Marekov, L N, Steinert, P M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Small proline-rich 1 (SPR1) proteins are important for barrier function in stratified squamous epithelia. To explore their properties, we expressed in bacteria a recombinant human SPR1 protein and isolated native SPR1 proteins from cultured mouse keratinocytes. By circular dichroism, they possess no alpha or beta structure but have some organized structure associated with their central peptide repeat domain. The transglutaminase (TGase) 1 and 3 enzymes use the SPR1 proteins as complete substrates in vitro but in different ways: head domain A sequences at the amino terminus were used preferentially for cross-linking by TGase 3, whereas those in head domain B sequences were used for cross-linking by TGase 1. The TGase 2 enzyme cross-linked SPR1 proteins poorly. Together with our data base of 141 examples of in vivo cross-links between SPRs and loricrin, this means that both TGase 1 and 3 are required for cross-linking SPR1 proteins in epithelia in vivo. Double in vitro cross-linking experiments suggest that oligomerization of SPR1 into large polymers can occur only by further TGase 1 cross-linking of an initial TGase 3 reaction. Accordingly, we propose that TGase 3 first cross-links loricrin and SPRs together to form small interchain oligomers, which are then permanently affixed to the developing CE by further cross-linking by the TGase 1 enzyme. This is consistent with the known consequences of diminished barrier function in TGase 1 deficiency models.
ISSN:0021-9258
DOI:10.1074/jbc.274.11.7226