Loading…

The function of the finger intrinsic muscles in response to electrical stimulation

The actions of the dorsal interosseous, volar interosseous, and lumbrical muscles were investigated using applied electrical stimulation and recording the moments that were generated across the metacarpophalangeal joint in flexion/extension and abduction/adduction, the proximal interphalangeal joint...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on rehabilitation engineering 1999-03, Vol.7 (1), p.19-26
Main Authors: Lauer, R.T., Kilgore, K.L., Hunter Peckham, P., Bhadra, N., Keith, M.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The actions of the dorsal interosseous, volar interosseous, and lumbrical muscles were investigated using applied electrical stimulation and recording the moments that were generated across the metacarpophalangeal joint in flexion/extension and abduction/adduction, the proximal interphalangeal joint in flexion/extension, and the distal interphalangeal joint in flexion/extension. These measurements were made isometrically at various joint angles and levels of stimulation with both able bodied subjects and persons who had sustained tetraplegia. It was determined that the dorsal interossei, including the first, were strong abductors of the fingers and generated a significant moment in metacarpophalangeal (MP) joint flexion and interphalangeal (IP) joint extension. The volar interossei were the primary adductors of the fingers, as well as providing a significant moment in MP joint flexion and IP joint extension. The lumbrical muscles were found to be MP joint flexors and IP joint extensors, although the moments that were generated were on average 70% lower than the interossei. The role of the lumbricals as finger abductors or adductors could not be determined from the data. This information on the actions and moment generating capabilities of the intrinsic muscles led to the incorporation of the interossei into electrically induced hand grasp provided by an implanted neuroprosthesis. The evaluation of the intrinsic muscles in the neuroprosthesis was accomplished by recording the moment generating capabilities of these muscles across each of the joints of the finger. These muscles were capable of generating moments that were 80-90% of the average attained by the able bodied subjects, and have provided a substantial improvement to the electrically induced hand grasp.
ISSN:1063-6528
1558-0024
DOI:10.1109/86.750547