Loading…

Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation

The rapid atrial rate during atrial fibrillation (AF) decreases the ionic current density of transient outward K+ current, L-type Ca2+ current, and Na+ current, thereby altering cardiac electrophysiology and promoting arrhythmia maintenance. To assess possible underlying changes in cardiac gene expr...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 1999-04, Vol.84 (7), p.776-784
Main Authors: LIXIA YUE, MELNYK, P, GASPO, R, ZHIGUO WANG, NATTEL, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c538t-a0aed898afbc622de7c23f90af6804f194d728617746221b19641156bdab10f33
cites cdi_FETCH-LOGICAL-c538t-a0aed898afbc622de7c23f90af6804f194d728617746221b19641156bdab10f33
container_end_page 784
container_issue 7
container_start_page 776
container_title Circulation research
container_volume 84
creator LIXIA YUE
MELNYK, P
GASPO, R
ZHIGUO WANG
NATTEL, S
description The rapid atrial rate during atrial fibrillation (AF) decreases the ionic current density of transient outward K+ current, L-type Ca2+ current, and Na+ current, thereby altering cardiac electrophysiology and promoting arrhythmia maintenance. To assess possible underlying changes in cardiac gene expression, we applied competitive reverse transcriptase-polymerase chain reaction to quantify mRNA concentrations in dogs subjected to 7 (group P7 dogs) or 42 (group P42 dogs) days of atrial pacing at 400 bpm and in sham controls. Rapid pacing reduced mRNA concentrations of Kv4.3 (putative gene encoding transient outward K+ current; by 60% in P7 and 74% in P42 dogs; P
doi_str_mv 10.1161/01.res.84.7.776
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69699715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69699715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-a0aed898afbc622de7c23f90af6804f194d728617746221b19641156bdab10f33</originalsourceid><addsrcrecordid>eNpdkM1r3DAUxEVp6W4-zr0FUUpudvQkWbKOIaRJYUMhX1chy1KqRbY20vqQ_z5OdiElpwfzfjMMg9APIDWAgDMCdXalbnktaynFF7SEhvKKNxK-oiUhRFWSMbJAB6WsCQHOqPqOFkAoaYA3S_R4k6KzUzQZD87-M2MoQ8HT2LscX8L4hEMag8XZDal38V0YscF9esLvCk4em20OJmIfuhxiNNvZcoS-eROLO97fQ_Tw-_L-4rpa_b36c3G-qmzD2m1liHF9q1rjOyso7Z20lHlFjBct4R4U7yVtBUjJ5zd0oAQHaETXmw6IZ-wQne5yNzk9T65s9RCKdXOL0aWpaKGEUhKaGfz5CVynKY9zN02BchBSvUFnO8jmVEp2Xm9yGEx-0UD0296agL69vNMt11LPe8-Ok33s1A2u_4_fDTwDv_aAKdZEn81oQ_ngZCuZAPYKsAmHxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212416795</pqid></control><display><type>article</type><title>Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation</title><source>Freely Accessible Science Journals</source><creator>LIXIA YUE ; MELNYK, P ; GASPO, R ; ZHIGUO WANG ; NATTEL, S</creator><creatorcontrib>LIXIA YUE ; MELNYK, P ; GASPO, R ; ZHIGUO WANG ; NATTEL, S</creatorcontrib><description>The rapid atrial rate during atrial fibrillation (AF) decreases the ionic current density of transient outward K+ current, L-type Ca2+ current, and Na+ current, thereby altering cardiac electrophysiology and promoting arrhythmia maintenance. To assess possible underlying changes in cardiac gene expression, we applied competitive reverse transcriptase-polymerase chain reaction to quantify mRNA concentrations in dogs subjected to 7 (group P7 dogs) or 42 (group P42 dogs) days of atrial pacing at 400 bpm and in sham controls. Rapid pacing reduced mRNA concentrations of Kv4.3 (putative gene encoding transient outward K+ current; by 60% in P7 and 74% in P42 dogs; P&lt;0.01 and P&lt;0.001, respectively, versus shams), the alpha1c subunit of L-type Ca2+ channels (by 57% in P7 and 72% in P42 dogs; P&lt;0.01 versus shams for each) and the alpha subunit of cardiac Na+ channels (by 18% in P7 and 42% in P42; P=NS and P&lt;0.01, respectively, versus shams) genes. The observed changes in ion channel mRNA concentrations paralleled previously measured changes in corresponding atrial ionic current densities. Atrial tachycardia did not affect mRNA concentrations of genes encoding delayed or Kir2.1 inward rectifier K+ currents (of which the densities are unchanged by atrial tachycardia) or of the Na+,Ca2+ exchanger. Western blot techniques were used to quantify protein expression for Kv4.3 and Na+ channel alpha subunits, which were decreased by 72% and 47%, respectively, in P42 dogs (P&lt;0.001 versus control for each), in a manner quantitatively similar to measured changes in mRNA and currents, whereas Na+,Ca2+ exchanger protein concentration was unchanged. We conclude that chronic atrial tachycardia alters atrial ion channel gene expression, thereby altering ionic currents in a fashion that promotes the occurrence of AF. These observations provide a potential molecular basis for the self-perpetuating nature of AF.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/01.res.84.7.776</identifier><identifier>PMID: 10205145</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott</publisher><subject>Animals ; Antisense Elements (Genetics) ; Atrial Fibrillation - physiopathology ; Biological and medical sciences ; Blotting, Western ; Calcium Channels - analysis ; Calcium Channels - genetics ; Calcium Channels, L-Type ; Cardiac dysrhythmias ; Cardiology. Vascular system ; Cloning, Molecular ; Disease Models, Animal ; DNA, Complementary ; Dogs ; Gene Expression - physiology ; Heart ; Medical sciences ; Myocardium - chemistry ; Potassium Channels - analysis ; Potassium Channels - genetics ; Potassium Channels, Inwardly Rectifying ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - analysis ; Sodium Channels - analysis ; Sodium Channels - genetics ; Transcription, Genetic - physiology</subject><ispartof>Circulation research, 1999-04, Vol.84 (7), p.776-784</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Apr 16, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-a0aed898afbc622de7c23f90af6804f194d728617746221b19641156bdab10f33</citedby><cites>FETCH-LOGICAL-c538t-a0aed898afbc622de7c23f90af6804f194d728617746221b19641156bdab10f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1787361$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10205145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIXIA YUE</creatorcontrib><creatorcontrib>MELNYK, P</creatorcontrib><creatorcontrib>GASPO, R</creatorcontrib><creatorcontrib>ZHIGUO WANG</creatorcontrib><creatorcontrib>NATTEL, S</creatorcontrib><title>Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>The rapid atrial rate during atrial fibrillation (AF) decreases the ionic current density of transient outward K+ current, L-type Ca2+ current, and Na+ current, thereby altering cardiac electrophysiology and promoting arrhythmia maintenance. To assess possible underlying changes in cardiac gene expression, we applied competitive reverse transcriptase-polymerase chain reaction to quantify mRNA concentrations in dogs subjected to 7 (group P7 dogs) or 42 (group P42 dogs) days of atrial pacing at 400 bpm and in sham controls. Rapid pacing reduced mRNA concentrations of Kv4.3 (putative gene encoding transient outward K+ current; by 60% in P7 and 74% in P42 dogs; P&lt;0.01 and P&lt;0.001, respectively, versus shams), the alpha1c subunit of L-type Ca2+ channels (by 57% in P7 and 72% in P42 dogs; P&lt;0.01 versus shams for each) and the alpha subunit of cardiac Na+ channels (by 18% in P7 and 42% in P42; P=NS and P&lt;0.01, respectively, versus shams) genes. The observed changes in ion channel mRNA concentrations paralleled previously measured changes in corresponding atrial ionic current densities. Atrial tachycardia did not affect mRNA concentrations of genes encoding delayed or Kir2.1 inward rectifier K+ currents (of which the densities are unchanged by atrial tachycardia) or of the Na+,Ca2+ exchanger. Western blot techniques were used to quantify protein expression for Kv4.3 and Na+ channel alpha subunits, which were decreased by 72% and 47%, respectively, in P42 dogs (P&lt;0.001 versus control for each), in a manner quantitatively similar to measured changes in mRNA and currents, whereas Na+,Ca2+ exchanger protein concentration was unchanged. We conclude that chronic atrial tachycardia alters atrial ion channel gene expression, thereby altering ionic currents in a fashion that promotes the occurrence of AF. These observations provide a potential molecular basis for the self-perpetuating nature of AF.</description><subject>Animals</subject><subject>Antisense Elements (Genetics)</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Calcium Channels - analysis</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels, L-Type</subject><subject>Cardiac dysrhythmias</subject><subject>Cardiology. Vascular system</subject><subject>Cloning, Molecular</subject><subject>Disease Models, Animal</subject><subject>DNA, Complementary</subject><subject>Dogs</subject><subject>Gene Expression - physiology</subject><subject>Heart</subject><subject>Medical sciences</subject><subject>Myocardium - chemistry</subject><subject>Potassium Channels - analysis</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels, Inwardly Rectifying</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - analysis</subject><subject>Sodium Channels - analysis</subject><subject>Sodium Channels - genetics</subject><subject>Transcription, Genetic - physiology</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkM1r3DAUxEVp6W4-zr0FUUpudvQkWbKOIaRJYUMhX1chy1KqRbY20vqQ_z5OdiElpwfzfjMMg9APIDWAgDMCdXalbnktaynFF7SEhvKKNxK-oiUhRFWSMbJAB6WsCQHOqPqOFkAoaYA3S_R4k6KzUzQZD87-M2MoQ8HT2LscX8L4hEMag8XZDal38V0YscF9esLvCk4em20OJmIfuhxiNNvZcoS-eROLO97fQ_Tw-_L-4rpa_b36c3G-qmzD2m1liHF9q1rjOyso7Z20lHlFjBct4R4U7yVtBUjJ5zd0oAQHaETXmw6IZ-wQne5yNzk9T65s9RCKdXOL0aWpaKGEUhKaGfz5CVynKY9zN02BchBSvUFnO8jmVEp2Xm9yGEx-0UD0296agL69vNMt11LPe8-Ok33s1A2u_4_fDTwDv_aAKdZEn81oQ_ngZCuZAPYKsAmHxA</recordid><startdate>19990416</startdate><enddate>19990416</enddate><creator>LIXIA YUE</creator><creator>MELNYK, P</creator><creator>GASPO, R</creator><creator>ZHIGUO WANG</creator><creator>NATTEL, S</creator><general>Lippincott</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>19990416</creationdate><title>Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation</title><author>LIXIA YUE ; MELNYK, P ; GASPO, R ; ZHIGUO WANG ; NATTEL, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-a0aed898afbc622de7c23f90af6804f194d728617746221b19641156bdab10f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Antisense Elements (Genetics)</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Calcium Channels - analysis</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels, L-Type</topic><topic>Cardiac dysrhythmias</topic><topic>Cardiology. Vascular system</topic><topic>Cloning, Molecular</topic><topic>Disease Models, Animal</topic><topic>DNA, Complementary</topic><topic>Dogs</topic><topic>Gene Expression - physiology</topic><topic>Heart</topic><topic>Medical sciences</topic><topic>Myocardium - chemistry</topic><topic>Potassium Channels - analysis</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels, Inwardly Rectifying</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - analysis</topic><topic>Sodium Channels - analysis</topic><topic>Sodium Channels - genetics</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIXIA YUE</creatorcontrib><creatorcontrib>MELNYK, P</creatorcontrib><creatorcontrib>GASPO, R</creatorcontrib><creatorcontrib>ZHIGUO WANG</creatorcontrib><creatorcontrib>NATTEL, S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIXIA YUE</au><au>MELNYK, P</au><au>GASPO, R</au><au>ZHIGUO WANG</au><au>NATTEL, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>1999-04-16</date><risdate>1999</risdate><volume>84</volume><issue>7</issue><spage>776</spage><epage>784</epage><pages>776-784</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>The rapid atrial rate during atrial fibrillation (AF) decreases the ionic current density of transient outward K+ current, L-type Ca2+ current, and Na+ current, thereby altering cardiac electrophysiology and promoting arrhythmia maintenance. To assess possible underlying changes in cardiac gene expression, we applied competitive reverse transcriptase-polymerase chain reaction to quantify mRNA concentrations in dogs subjected to 7 (group P7 dogs) or 42 (group P42 dogs) days of atrial pacing at 400 bpm and in sham controls. Rapid pacing reduced mRNA concentrations of Kv4.3 (putative gene encoding transient outward K+ current; by 60% in P7 and 74% in P42 dogs; P&lt;0.01 and P&lt;0.001, respectively, versus shams), the alpha1c subunit of L-type Ca2+ channels (by 57% in P7 and 72% in P42 dogs; P&lt;0.01 versus shams for each) and the alpha subunit of cardiac Na+ channels (by 18% in P7 and 42% in P42; P=NS and P&lt;0.01, respectively, versus shams) genes. The observed changes in ion channel mRNA concentrations paralleled previously measured changes in corresponding atrial ionic current densities. Atrial tachycardia did not affect mRNA concentrations of genes encoding delayed or Kir2.1 inward rectifier K+ currents (of which the densities are unchanged by atrial tachycardia) or of the Na+,Ca2+ exchanger. Western blot techniques were used to quantify protein expression for Kv4.3 and Na+ channel alpha subunits, which were decreased by 72% and 47%, respectively, in P42 dogs (P&lt;0.001 versus control for each), in a manner quantitatively similar to measured changes in mRNA and currents, whereas Na+,Ca2+ exchanger protein concentration was unchanged. We conclude that chronic atrial tachycardia alters atrial ion channel gene expression, thereby altering ionic currents in a fashion that promotes the occurrence of AF. These observations provide a potential molecular basis for the self-perpetuating nature of AF.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott</pub><pmid>10205145</pmid><doi>10.1161/01.res.84.7.776</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 1999-04, Vol.84 (7), p.776-784
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_69699715
source Freely Accessible Science Journals
subjects Animals
Antisense Elements (Genetics)
Atrial Fibrillation - physiopathology
Biological and medical sciences
Blotting, Western
Calcium Channels - analysis
Calcium Channels - genetics
Calcium Channels, L-Type
Cardiac dysrhythmias
Cardiology. Vascular system
Cloning, Molecular
Disease Models, Animal
DNA, Complementary
Dogs
Gene Expression - physiology
Heart
Medical sciences
Myocardium - chemistry
Potassium Channels - analysis
Potassium Channels - genetics
Potassium Channels, Inwardly Rectifying
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - analysis
Sodium Channels - analysis
Sodium Channels - genetics
Transcription, Genetic - physiology
title Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20underlying%20ionic%20remodeling%20in%20a%20dog%20model%20of%20atrial%20fibrillation&rft.jtitle=Circulation%20research&rft.au=LIXIA%20YUE&rft.date=1999-04-16&rft.volume=84&rft.issue=7&rft.spage=776&rft.epage=784&rft.pages=776-784&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/01.res.84.7.776&rft_dat=%3Cproquest_cross%3E69699715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c538t-a0aed898afbc622de7c23f90af6804f194d728617746221b19641156bdab10f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=212416795&rft_id=info:pmid/10205145&rfr_iscdi=true