Loading…
Cytosol-to-lysosome transport of free polymannose-type oligosaccharides. Kinetic and specificity studies using rat liver lysosomes
In hepatocellular carcinoma HepG2 cells, free polymannose-type oligosaccharides appearing in the cytosol during the biosynthesis and quality control of glycoproteins are rapidly translocated into lysosomes by an as yet poorly defined process (Saint-Pol, A., Bauvy, C., Codogno, P., and Moore, S. E. H...
Saved in:
Published in: | The Journal of biological chemistry 1999-05, Vol.274 (19), p.13547-13555 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In hepatocellular carcinoma HepG2 cells, free polymannose-type oligosaccharides appearing in the cytosol during the biosynthesis and quality control of glycoproteins are rapidly translocated into lysosomes by an as yet poorly defined process (Saint-Pol, A., Bauvy, C., Codogno, P., and Moore, S. E. H. (1997) J. Cell Biol. 136, 45-59). Here, we demonstrate an ATP-dependent association of [2-3H]mannose-labeled Man5GlcNAc with isolated rat liver lysosomes. This association was only observed in the presence of swainsonine, a mannosidase inhibitor, which was required for the protection of sedimentable, but not nonsedimentable, Man5GlcNAc from degradation, indicating that oligosaccharides were transported into lysosomes. Saturable high affinity transport (Kuptake, 22.3 microM, Vmax, 7.1 fmol/min/unit of beta-hexosaminidase) was dependent upon the hydrolysis of ATP but independent of vacuolar H+/ATPase activity. Transport was inhibited strongly by NEM and weakly by vanadate but not by sodium azide, and, in addition, the sugar transport inhibitors phloretin, phloridzin, and cytochalasin B were without effect on transport. Oligosaccharide import did not show absolute specificity but was selective toward partially demannosylated and dephosphorylated oligosaccharides, and, furthermore, inhibition studies revealed that the free reducing GlcNAc residue of the oligosaccharide was of critical importance for its interaction with the transporter. These results demonstrate the presence of a novel lysosomal free oligosaccharide transporter that must work in concert with cytosolic hydrolases in order to clear the cytosol of endoplasmic reticulum-generated free oligosaccharides. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.274.19.13547 |