Loading…

Near-UV photolysis of substituted phenols Part II.† 4-, 3-and 2-methylphenol

The photodissociation of jet-cooled 4-, 3- and 2-methylphenol molecules has been investigated using the experimental techniques of resonance enhanced multiphoton ionisation and H (Rydberg) atom photofragment translational spectroscopy. O-H bond fission is found to occur, via a repulsive (1)pisigma s...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2008, Vol.10 (42), p.6417-6429
Main Authors: KING, Graeme A, DEVINE, Adam L, NIX, Michael G. D, KELLY, David E, ASHFOLD, Michael N. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photodissociation of jet-cooled 4-, 3- and 2-methylphenol molecules has been investigated using the experimental techniques of resonance enhanced multiphoton ionisation and H (Rydberg) atom photofragment translational spectroscopy. O-H bond fission is found to occur, via a repulsive (1)pisigma state, in a manner analogous to that occurring in phenol and 4-fluorophenol. Excitation to the (1)pipi manifold results in H-atom loss either directly (via a (1)pipi/(1)pisigma conical intersection) or indirectly, following internal conversion to the ground state and subsequent coupling to the (1)pisigma state via a second conical intersection at extended O-H bond lengths. The resulting methylphenoxyl radicals are created with specific vibrational excitation, reflecting the nuclear distortions required to access the (1)pisigma potential energy surface and the geometry changes induced by subsequent H atom loss. The position of the methyl group on the benzene ring is observed to influence the product vibrational energy disposal-not least through its influence on the mode(s) that are activated as a result of coupling to the repulsive (1)pisigma state. O-H bond strengths are reported for 4-, 3- and 2-methylphenol. These are in good agreement with values derived from recent combustion calorimetry studies and serve to highlight the relative destabilisation of the radical caused by methyl substitution at the 3-position.
ISSN:1463-9076
1463-9084
DOI:10.1039/b809250h