Loading…

Resolution of front-back ambiguity in spatial hearing by listener and source movement

Normally, the apparent position of a sound source corresponds closely to its actual position. However, in some experimental situations listeners make large errors, such as indicating that a source in the frontal hemifield appears to be in the rear hemifield, or vice versa. These front-back confusion...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 1999-05, Vol.105 (5), p.2841-2853
Main Authors: Wightman, F L, Kistler, D J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Normally, the apparent position of a sound source corresponds closely to its actual position. However, in some experimental situations listeners make large errors, such as indicating that a source in the frontal hemifield appears to be in the rear hemifield, or vice versa. These front-back confusions are thought to be a result of the inherent ambiguity of the primary interaural difference cues, interaural time difference (ITD) in particular. A given ITD could have been produced by a sound source anywhere on the so-called "cone of confusion." More than 50 years ago Wallach [J. Exp. Psychol. 27, 339-368 (1940)] argued that small head movements could provide the information necessary to resolve the ambiguity. The direction of the change in ITD that accompanies a head rotation is an unambiguous indicator of the proper hemifield. The experiments reported here are a modern test of Wallach's hypothesis. Listeners indicated the apparent positions of real and virtual sound sources in conditions in which head movements were either restricted or encouraged. The front-back confusions made in the restricted condition nearly disappeared in the condition in which head movements were encouraged. In a second experiment head movements were restricted, but the sound source was moved, either by the experimenter or by the listener. Only when the listener moved the sound source did front-back confusions disappear. The results clearly support Wallach's hypothesis and suggest further that head movements are not required to produce the dynamic cues needed to resolve front-back ambiguity.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.426899