Loading…
Dynamics of structure-function relationships in interphase nuclei
The interphase nucleus is a topologically ordered, three-dimensional structure. While it remains unclear whether this structural organization also represents compartmentalization of function, the presence of the latter would likely be reflected in the spatial coupling of molecular factors involved i...
Saved in:
Published in: | Life Sciences 1999, Vol.64 (19), p.1703-1718 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The interphase nucleus is a topologically ordered, three-dimensional structure. While it remains unclear whether this structural organization also represents compartmentalization of function, the presence of the latter would likely be reflected in the spatial coupling of molecular factors involved in related events. This review summarizes morphological evidence, derived from
in situ experiments, which indicates the existence of compartmentalization of both chromatin and non-chromatin components in the interphase nucleus. Moreover, the review addresses the spatial relationships of these components relative to each other and correlates these spatial relationships with such nuclear functions as transcription, splicing and nucleo-cytoplasmic transport of pre-mRNA. Given that it is increasingly recognized that such spatial relationships are dynamic, the review also addresses the emerging concept that the spatial intranuclear organization changes with changes in cell function, a concept which supports the hypothesis that the spatial organization of the interphase nucleus may represent one of the fundamental control mechanisms in gene expression. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/S0024-3205(99)00003-X |