Loading…

Structural information for explaining the molecular mechanism of protein biosynthesis

Protein biosynthesis is controlled by a number of proteins external to the ribosome. Of these, extensive structural investigations have been performed on elongation factor-Tu and elongation factor-G. This now gives a rather complete structural picture of the functional cycle of elongation factor-Tu...

Full description

Saved in:
Bibliographic Details
Published in:FEBS Letters 1999-06, Vol.452 (1), p.41-46
Main Authors: Clark, Brian F.C, Thirup, Søren, Kjeldgaard, Morten, Nyborg, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein biosynthesis is controlled by a number of proteins external to the ribosome. Of these, extensive structural investigations have been performed on elongation factor-Tu and elongation factor-G. This now gives a rather complete structural picture of the functional cycle of elongation factor-Tu and especially of the elongation phase of protein biosynthesis. The discovery that three domains of elongation factor-G are structurally mimicking the amino-acylated tRNA in the ternary complex of elongation factor-Tu has been the basis of much discussion of the functional similarities and functional differences of elongation factor-Tu and elongation factor-G in their interactions with the ribosome. Elongation factor-G:GDP is now thought to leave the ribosome in a state ready for checking the codon-anticodon interaction of the aminoacyl-tRNA contained in the ternary complex of elongation factor-Tu. Elongation factor-G does this by mimicking the shape of the ternary complex. Other translation factors such as the initiation factor-2 and the release factor 1 or 2 are also thought to mimic tRNA. These observations raise questions concerning the possible evolution of G-proteins involved in protein biosynthesis.
ISSN:0014-5793
1873-3468
DOI:10.1016/S0014-5793(99)00562-1