Loading…
Activation kinetics of the K+ outward rectifying conductance (KORC) in xylem parenchyma cells from barley roots
The activation kinetics of outward currents in protoplasts from barley root xylem parenchyma was investigated using the patch-clamp technique. The K(+) outward rectifying conductance (KORC), providing the main pathway for K(+) transport to the xylem, could be described in terms of a Hodgkin-Huxley m...
Saved in:
Published in: | The Journal of membrane biology 1999-07, Vol.170 (2), p.103-119 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The activation kinetics of outward currents in protoplasts from barley root xylem parenchyma was investigated using the patch-clamp technique. The K(+) outward rectifying conductance (KORC), providing the main pathway for K(+) transport to the xylem, could be described in terms of a Hodgkin-Huxley model with four independent gates. Gating of KORC depended on voltage and the external K(+) concentration. An increase in the external K(+) concentration resulted in a shift in the voltage dependence of gating. This could be explained by a K(+) dependence of the rate constant beta for channel closure, indicating binding of K(+) to a regulatory site exposed to the bath. Occasionally, KORC was observed to inactivate; this inactivation occurred and vanished spontaneously. In some of the whole cell and excised patch recordings, a stepwise increase in outward current was observed upon a depolarizing voltage pulse, indicating that several populations of 'sleepy' channels existed in the plasma membrane that activated with a certain lag time. It is discussed whether this observation can be explained by a putative subunit, which retards channel activation, or by a scheme of cooperative gating. A quantitative description of outward rectifying K(+) channels in xylem parenchyma cells is a major step forward towards a mathematical model of salt transport into the xylem. |
---|---|
ISSN: | 0022-2631 1432-1424 |
DOI: | 10.1007/s002329900541 |