Loading…
Delineation of the Oligomerization, AP-2 Binding, and Synprint Binding Region of the C2B Domain of Synaptotagmin
Biochemical and genetic studies indicate that synaptotagmin I functions as a Ca2+ sensor during synaptic vesicle exocytosis and as a membrane receptor for the clathrin adaptor complex, AP-2, during endocytosis. These functions involve the interaction of two conserved domains, C2A and C2B, with effec...
Saved in:
Published in: | The Journal of biological chemistry 1998-12, Vol.273 (49), p.32966-32972 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biochemical and genetic studies indicate that synaptotagmin I functions as a Ca2+ sensor during synaptic vesicle exocytosis and as a membrane receptor for the clathrin adaptor complex, AP-2, during endocytosis. These functions involve the interaction of two conserved domains, C2A and C2B, with effector proteins. The C2B domain mediates Ca2+-triggered synaptotagmin oligomerization, binds AP-2 and is important for the interaction of synaptotagmin with Ca2+ channels. Here, we report that these are conserved biochemical properties: Ca2+ promoted the hetero-oligomerization of synaptotagmin I with synaptotagmins III and IV, and all three synaptotagmin isoforms bound the synprint region of the α1B subunit of N-type Ca2+ channels. Using chimeric and truncated C2 domains, we defined a common region of C2B that mediates oligomerization and AP-2 binding. Within this region, two adjacent lysine residues were identified that were critical for synaptotagmin oligomerization, AP-2, and synprint binding. Competition experiments demonstrated that the synprint fragment was an effective inhibitor of synaptotagmin oligomerization and also blocked binding of synaptotagmin to AP-2. In a model for the structure of C2B, the common effector binding site localized to a putative Ca2+-binding loop and a concave region formed by two β-strands. These studies provide the first structural information regarding C2B target protein recognition and provide the means to selectively disrupt synaptotagmin-effector interactions for functional studies. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.273.49.32966 |