Loading…
Identification of Three Putative GnRH Receptor Subtypes in Vertebrates
The majority of vertebrates have two or three forms of gonadotropin-releasing hormone (GnRH), which appear to have arisen by successive gene duplication events. This suggests the possibility of concordant gene duplications of the GnRH receptor to produce two or more cognate receptors. Since the extr...
Saved in:
Published in: | General and comparative endocrinology 1998-12, Vol.112 (3), p.296-302 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The majority of vertebrates have two or three forms of gonadotropin-releasing hormone (GnRH), which appear to have arisen by successive gene duplication events. This suggests the possibility of concordant gene duplications of the GnRH receptor to produce two or more cognate receptors. Since the extracellular loop 3 (EC3) domain of mammalian GnRH receptors plays a role in distinguishing the different forms of GnRH, we have contemplated that the sequence of this domain will differ significantly in the putative cognate receptors. Degenerate oliognucleotides encoding the sequences of the transmembrane domains preceding and following EC3 were used for PCR amplification of genomic DNA from zebrafish (Brachydanio rerio), goldfish (Carassius auratus), African clawed frog (Xenopus laevis), chicken (Gallus domesticus), and lizard (Agama atra). Isolation and sequencing of specific clones revealed that they fell into three groups. Two of these were most similar to the mammalian pituitary GnRH receptor and were therefore designated Type IA and Type IB. The third form (designated Type II) was most different from the others and was identified inXenopus,lizard, and human DNA. These findings support the concept of the existence of three distinct GnRH receptors, which have evolved in conjunction with three distinct GnRH ligand classes present in many vertebrates. |
---|---|
ISSN: | 0016-6480 1095-6840 |
DOI: | 10.1006/gcen.1998.7156 |