Loading…

Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants

Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotri...

Full description

Saved in:
Bibliographic Details
Published in:Antonie van Leeuwenhoek 2008-02, Vol.93 (1-2), p.79-85
Main Authors: Park, Hyung Soo, Lin, Shiping, Voordouw, Gerrit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073
cites cdi_FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073
container_end_page 85
container_issue 1-2
container_start_page 79
container_title Antonie van Leeuwenhoek
container_volume 93
creator Park, Hyung Soo
Lin, Shiping
Voordouw, Gerrit
description Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotriacetic acid (NTA), but not insoluble ferric oxide, with lactate as the electron donor. The rate and extent of Fe(III)-NTA reduction followed the order hyn = WT > hmc >> hyd, suggesting that reduction of soluble Fe(III) is a periplasmic process that requires the presence of periplasmic [FeFe] hydrogenase. Reduction of Fe(III)-NTA was not coupled to cell growth. In fact cell concentrations declined when D. vulgaris was incubated with Fe(III)-NTA as the only electron acceptor. Wild type and mutant cells reducing a limiting concentration of sulfate (2 mM), reduced Fe(III)-NTA with similar rates. However, these were similarly incapable of catalyzing subsequent lactate-dependent reduction of Fe(III)-NTA to completion. Periplasmic reduction of Fe(III)-NTA appeared to inhibit the productive, sulfate-reducing metabolism of D. vulgaris, possibly because it prevents the cycling of reducing equivalents needed to achieve a net bioenergetic benefit.
doi_str_mv 10.1007/s10482-007-9181-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70100540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896137801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073</originalsourceid><addsrcrecordid>eNqFksFu1DAQhi0EokvhAbiAhQS3wNiOY_uICqVIlThAz5bjTBZXSbzYSdG-PY6yohIHevKM5pt_7PlNyEsG7xmA-pAZ1JpXJawM06wSj8iOScUr0xjzmOwAQFQNKH5GnuV8W1LTaPWUnDEltWZc7AheYkrB05DiRBN2i59Didoj_YR5Gfp4F9oUIr1bhr1LIdOrMHQ4tTHFZf-T_i4ZnY8HpG7qKE6Y9kc64uzaOIQ80nGZ3TTn5-RJ74aML07nObm5_Pzj4qq6_vbl68XH68rXWs6VYB563wnZ1C1IUFJ0HIBLyVFq6WUL4BvDatM7qcABtp5pRN151dQKlDgn7zbdQ4q_FsyzHUP2OAxuwrhkq6DsTdbwIMgZl4wp8zAI2pRFropv_gFv45Km8lpbyswwI1Y1tkE-xZwT9vaQwujS0TKwq6V2s9Su4WqpFaXn1Ul4aUfs7jtOHhbg7Qlw2buhT27yIf_lygZrYYwuHN-4XErTHtP9Df83_fXW1Lto3b78AHvznQMTAFo0gkvxB8O9wUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230191939</pqid></control><display><type>article</type><title>Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants</title><source>Springer Nature</source><creator>Park, Hyung Soo ; Lin, Shiping ; Voordouw, Gerrit</creator><creatorcontrib>Park, Hyung Soo ; Lin, Shiping ; Voordouw, Gerrit</creatorcontrib><description>Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotriacetic acid (NTA), but not insoluble ferric oxide, with lactate as the electron donor. The rate and extent of Fe(III)-NTA reduction followed the order hyn = WT &gt; hmc &gt;&gt; hyd, suggesting that reduction of soluble Fe(III) is a periplasmic process that requires the presence of periplasmic [FeFe] hydrogenase. Reduction of Fe(III)-NTA was not coupled to cell growth. In fact cell concentrations declined when D. vulgaris was incubated with Fe(III)-NTA as the only electron acceptor. Wild type and mutant cells reducing a limiting concentration of sulfate (2 mM), reduced Fe(III)-NTA with similar rates. However, these were similarly incapable of catalyzing subsequent lactate-dependent reduction of Fe(III)-NTA to completion. Periplasmic reduction of Fe(III)-NTA appeared to inhibit the productive, sulfate-reducing metabolism of D. vulgaris, possibly because it prevents the cycling of reducing equivalents needed to achieve a net bioenergetic benefit.</description><identifier>ISSN: 0003-6072</identifier><identifier>EISSN: 1572-9699</identifier><identifier>DOI: 10.1007/s10482-007-9181-3</identifier><identifier>PMID: 17588123</identifier><identifier>CODEN: ANLEDR</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Anthraquinones - metabolism ; Bacteria ; Bacteriology ; Biological and medical sciences ; Biomedical and Life Sciences ; Desulfovibrio vulgaris ; Desulfovibrio vulgaris - genetics ; Desulfovibrio vulgaris - metabolism ; Energy Metabolism - genetics ; Enzymes ; Ferric Compounds - metabolism ; Fundamental and applied biological sciences. Psychology ; Genotype ; Hydrogenase - metabolism ; Iron ; Iron - metabolism ; Life Sciences ; Marine ; Medical Microbiology ; Metabolism ; Metabolism. Enzymes ; Microbiology ; Mutation ; Nitrilotriacetic acid ; Original Paper ; Oxidation-Reduction ; Plant Sciences ; Soil Science &amp; Conservation ; Sulfate reduction ; Sulfates ; Sulfates - metabolism</subject><ispartof>Antonie van Leeuwenhoek, 2008-02, Vol.93 (1-2), p.79-85</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073</citedby><cites>FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20043998$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17588123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Hyung Soo</creatorcontrib><creatorcontrib>Lin, Shiping</creatorcontrib><creatorcontrib>Voordouw, Gerrit</creatorcontrib><title>Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants</title><title>Antonie van Leeuwenhoek</title><addtitle>Antonie van Leeuwenhoek</addtitle><addtitle>Antonie Van Leeuwenhoek</addtitle><description>Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotriacetic acid (NTA), but not insoluble ferric oxide, with lactate as the electron donor. The rate and extent of Fe(III)-NTA reduction followed the order hyn = WT &gt; hmc &gt;&gt; hyd, suggesting that reduction of soluble Fe(III) is a periplasmic process that requires the presence of periplasmic [FeFe] hydrogenase. Reduction of Fe(III)-NTA was not coupled to cell growth. In fact cell concentrations declined when D. vulgaris was incubated with Fe(III)-NTA as the only electron acceptor. Wild type and mutant cells reducing a limiting concentration of sulfate (2 mM), reduced Fe(III)-NTA with similar rates. However, these were similarly incapable of catalyzing subsequent lactate-dependent reduction of Fe(III)-NTA to completion. Periplasmic reduction of Fe(III)-NTA appeared to inhibit the productive, sulfate-reducing metabolism of D. vulgaris, possibly because it prevents the cycling of reducing equivalents needed to achieve a net bioenergetic benefit.</description><subject>Anthraquinones - metabolism</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Desulfovibrio vulgaris</subject><subject>Desulfovibrio vulgaris - genetics</subject><subject>Desulfovibrio vulgaris - metabolism</subject><subject>Energy Metabolism - genetics</subject><subject>Enzymes</subject><subject>Ferric Compounds - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genotype</subject><subject>Hydrogenase - metabolism</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Medical Microbiology</subject><subject>Metabolism</subject><subject>Metabolism. Enzymes</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Nitrilotriacetic acid</subject><subject>Original Paper</subject><subject>Oxidation-Reduction</subject><subject>Plant Sciences</subject><subject>Soil Science &amp; Conservation</subject><subject>Sulfate reduction</subject><subject>Sulfates</subject><subject>Sulfates - metabolism</subject><issn>0003-6072</issn><issn>1572-9699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFksFu1DAQhi0EokvhAbiAhQS3wNiOY_uICqVIlThAz5bjTBZXSbzYSdG-PY6yohIHevKM5pt_7PlNyEsG7xmA-pAZ1JpXJawM06wSj8iOScUr0xjzmOwAQFQNKH5GnuV8W1LTaPWUnDEltWZc7AheYkrB05DiRBN2i59Didoj_YR5Gfp4F9oUIr1bhr1LIdOrMHQ4tTHFZf-T_i4ZnY8HpG7qKE6Y9kc64uzaOIQ80nGZ3TTn5-RJ74aML07nObm5_Pzj4qq6_vbl68XH68rXWs6VYB563wnZ1C1IUFJ0HIBLyVFq6WUL4BvDatM7qcABtp5pRN151dQKlDgn7zbdQ4q_FsyzHUP2OAxuwrhkq6DsTdbwIMgZl4wp8zAI2pRFropv_gFv45Km8lpbyswwI1Y1tkE-xZwT9vaQwujS0TKwq6V2s9Su4WqpFaXn1Ul4aUfs7jtOHhbg7Qlw2buhT27yIf_lygZrYYwuHN-4XErTHtP9Df83_fXW1Lto3b78AHvznQMTAFo0gkvxB8O9wUk</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Park, Hyung Soo</creator><creator>Lin, Shiping</creator><creator>Voordouw, Gerrit</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants</title><author>Park, Hyung Soo ; Lin, Shiping ; Voordouw, Gerrit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anthraquinones - metabolism</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Desulfovibrio vulgaris</topic><topic>Desulfovibrio vulgaris - genetics</topic><topic>Desulfovibrio vulgaris - metabolism</topic><topic>Energy Metabolism - genetics</topic><topic>Enzymes</topic><topic>Ferric Compounds - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genotype</topic><topic>Hydrogenase - metabolism</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Medical Microbiology</topic><topic>Metabolism</topic><topic>Metabolism. Enzymes</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Nitrilotriacetic acid</topic><topic>Original Paper</topic><topic>Oxidation-Reduction</topic><topic>Plant Sciences</topic><topic>Soil Science &amp; Conservation</topic><topic>Sulfate reduction</topic><topic>Sulfates</topic><topic>Sulfates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyung Soo</creatorcontrib><creatorcontrib>Lin, Shiping</creatorcontrib><creatorcontrib>Voordouw, Gerrit</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Antonie van Leeuwenhoek</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hyung Soo</au><au>Lin, Shiping</au><au>Voordouw, Gerrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants</atitle><jtitle>Antonie van Leeuwenhoek</jtitle><stitle>Antonie van Leeuwenhoek</stitle><addtitle>Antonie Van Leeuwenhoek</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>93</volume><issue>1-2</issue><spage>79</spage><epage>85</epage><pages>79-85</pages><issn>0003-6072</issn><eissn>1572-9699</eissn><coden>ANLEDR</coden><abstract>Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotriacetic acid (NTA), but not insoluble ferric oxide, with lactate as the electron donor. The rate and extent of Fe(III)-NTA reduction followed the order hyn = WT &gt; hmc &gt;&gt; hyd, suggesting that reduction of soluble Fe(III) is a periplasmic process that requires the presence of periplasmic [FeFe] hydrogenase. Reduction of Fe(III)-NTA was not coupled to cell growth. In fact cell concentrations declined when D. vulgaris was incubated with Fe(III)-NTA as the only electron acceptor. Wild type and mutant cells reducing a limiting concentration of sulfate (2 mM), reduced Fe(III)-NTA with similar rates. However, these were similarly incapable of catalyzing subsequent lactate-dependent reduction of Fe(III)-NTA to completion. Periplasmic reduction of Fe(III)-NTA appeared to inhibit the productive, sulfate-reducing metabolism of D. vulgaris, possibly because it prevents the cycling of reducing equivalents needed to achieve a net bioenergetic benefit.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>17588123</pmid><doi>10.1007/s10482-007-9181-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6072
ispartof Antonie van Leeuwenhoek, 2008-02, Vol.93 (1-2), p.79-85
issn 0003-6072
1572-9699
language eng
recordid cdi_proquest_miscellaneous_70100540
source Springer Nature
subjects Anthraquinones - metabolism
Bacteria
Bacteriology
Biological and medical sciences
Biomedical and Life Sciences
Desulfovibrio vulgaris
Desulfovibrio vulgaris - genetics
Desulfovibrio vulgaris - metabolism
Energy Metabolism - genetics
Enzymes
Ferric Compounds - metabolism
Fundamental and applied biological sciences. Psychology
Genotype
Hydrogenase - metabolism
Iron
Iron - metabolism
Life Sciences
Marine
Medical Microbiology
Metabolism
Metabolism. Enzymes
Microbiology
Mutation
Nitrilotriacetic acid
Original Paper
Oxidation-Reduction
Plant Sciences
Soil Science & Conservation
Sulfate reduction
Sulfates
Sulfates - metabolism
title Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferric%20iron%20reduction%20by%20Desulfovibrio%20vulgaris%20Hildenborough%20wild%20type%20and%20energy%20metabolism%20mutants&rft.jtitle=Antonie%20van%20Leeuwenhoek&rft.au=Park,%20Hyung%20Soo&rft.date=2008-02-01&rft.volume=93&rft.issue=1-2&rft.spage=79&rft.epage=85&rft.pages=79-85&rft.issn=0003-6072&rft.eissn=1572-9699&rft.coden=ANLEDR&rft_id=info:doi/10.1007/s10482-007-9181-3&rft_dat=%3Cproquest_cross%3E1896137801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230191939&rft_id=info:pmid/17588123&rfr_iscdi=true