Loading…
Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants
Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotri...
Saved in:
Published in: | Antonie van Leeuwenhoek 2008-02, Vol.93 (1-2), p.79-85 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073 |
container_end_page | 85 |
container_issue | 1-2 |
container_start_page | 79 |
container_title | Antonie van Leeuwenhoek |
container_volume | 93 |
creator | Park, Hyung Soo Lin, Shiping Voordouw, Gerrit |
description | Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotriacetic acid (NTA), but not insoluble ferric oxide, with lactate as the electron donor. The rate and extent of Fe(III)-NTA reduction followed the order hyn = WT > hmc >> hyd, suggesting that reduction of soluble Fe(III) is a periplasmic process that requires the presence of periplasmic [FeFe] hydrogenase. Reduction of Fe(III)-NTA was not coupled to cell growth. In fact cell concentrations declined when D. vulgaris was incubated with Fe(III)-NTA as the only electron acceptor. Wild type and mutant cells reducing a limiting concentration of sulfate (2 mM), reduced Fe(III)-NTA with similar rates. However, these were similarly incapable of catalyzing subsequent lactate-dependent reduction of Fe(III)-NTA to completion. Periplasmic reduction of Fe(III)-NTA appeared to inhibit the productive, sulfate-reducing metabolism of D. vulgaris, possibly because it prevents the cycling of reducing equivalents needed to achieve a net bioenergetic benefit. |
doi_str_mv | 10.1007/s10482-007-9181-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70100540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896137801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073</originalsourceid><addsrcrecordid>eNqFksFu1DAQhi0EokvhAbiAhQS3wNiOY_uICqVIlThAz5bjTBZXSbzYSdG-PY6yohIHevKM5pt_7PlNyEsG7xmA-pAZ1JpXJawM06wSj8iOScUr0xjzmOwAQFQNKH5GnuV8W1LTaPWUnDEltWZc7AheYkrB05DiRBN2i59Didoj_YR5Gfp4F9oUIr1bhr1LIdOrMHQ4tTHFZf-T_i4ZnY8HpG7qKE6Y9kc64uzaOIQ80nGZ3TTn5-RJ74aML07nObm5_Pzj4qq6_vbl68XH68rXWs6VYB563wnZ1C1IUFJ0HIBLyVFq6WUL4BvDatM7qcABtp5pRN151dQKlDgn7zbdQ4q_FsyzHUP2OAxuwrhkq6DsTdbwIMgZl4wp8zAI2pRFropv_gFv45Km8lpbyswwI1Y1tkE-xZwT9vaQwujS0TKwq6V2s9Su4WqpFaXn1Ul4aUfs7jtOHhbg7Qlw2buhT27yIf_lygZrYYwuHN-4XErTHtP9Df83_fXW1Lto3b78AHvznQMTAFo0gkvxB8O9wUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230191939</pqid></control><display><type>article</type><title>Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants</title><source>Springer Nature</source><creator>Park, Hyung Soo ; Lin, Shiping ; Voordouw, Gerrit</creator><creatorcontrib>Park, Hyung Soo ; Lin, Shiping ; Voordouw, Gerrit</creatorcontrib><description>Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotriacetic acid (NTA), but not insoluble ferric oxide, with lactate as the electron donor. The rate and extent of Fe(III)-NTA reduction followed the order hyn = WT > hmc >> hyd, suggesting that reduction of soluble Fe(III) is a periplasmic process that requires the presence of periplasmic [FeFe] hydrogenase. Reduction of Fe(III)-NTA was not coupled to cell growth. In fact cell concentrations declined when D. vulgaris was incubated with Fe(III)-NTA as the only electron acceptor. Wild type and mutant cells reducing a limiting concentration of sulfate (2 mM), reduced Fe(III)-NTA with similar rates. However, these were similarly incapable of catalyzing subsequent lactate-dependent reduction of Fe(III)-NTA to completion. Periplasmic reduction of Fe(III)-NTA appeared to inhibit the productive, sulfate-reducing metabolism of D. vulgaris, possibly because it prevents the cycling of reducing equivalents needed to achieve a net bioenergetic benefit.</description><identifier>ISSN: 0003-6072</identifier><identifier>EISSN: 1572-9699</identifier><identifier>DOI: 10.1007/s10482-007-9181-3</identifier><identifier>PMID: 17588123</identifier><identifier>CODEN: ANLEDR</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Anthraquinones - metabolism ; Bacteria ; Bacteriology ; Biological and medical sciences ; Biomedical and Life Sciences ; Desulfovibrio vulgaris ; Desulfovibrio vulgaris - genetics ; Desulfovibrio vulgaris - metabolism ; Energy Metabolism - genetics ; Enzymes ; Ferric Compounds - metabolism ; Fundamental and applied biological sciences. Psychology ; Genotype ; Hydrogenase - metabolism ; Iron ; Iron - metabolism ; Life Sciences ; Marine ; Medical Microbiology ; Metabolism ; Metabolism. Enzymes ; Microbiology ; Mutation ; Nitrilotriacetic acid ; Original Paper ; Oxidation-Reduction ; Plant Sciences ; Soil Science & Conservation ; Sulfate reduction ; Sulfates ; Sulfates - metabolism</subject><ispartof>Antonie van Leeuwenhoek, 2008-02, Vol.93 (1-2), p.79-85</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073</citedby><cites>FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20043998$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17588123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Hyung Soo</creatorcontrib><creatorcontrib>Lin, Shiping</creatorcontrib><creatorcontrib>Voordouw, Gerrit</creatorcontrib><title>Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants</title><title>Antonie van Leeuwenhoek</title><addtitle>Antonie van Leeuwenhoek</addtitle><addtitle>Antonie Van Leeuwenhoek</addtitle><description>Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotriacetic acid (NTA), but not insoluble ferric oxide, with lactate as the electron donor. The rate and extent of Fe(III)-NTA reduction followed the order hyn = WT > hmc >> hyd, suggesting that reduction of soluble Fe(III) is a periplasmic process that requires the presence of periplasmic [FeFe] hydrogenase. Reduction of Fe(III)-NTA was not coupled to cell growth. In fact cell concentrations declined when D. vulgaris was incubated with Fe(III)-NTA as the only electron acceptor. Wild type and mutant cells reducing a limiting concentration of sulfate (2 mM), reduced Fe(III)-NTA with similar rates. However, these were similarly incapable of catalyzing subsequent lactate-dependent reduction of Fe(III)-NTA to completion. Periplasmic reduction of Fe(III)-NTA appeared to inhibit the productive, sulfate-reducing metabolism of D. vulgaris, possibly because it prevents the cycling of reducing equivalents needed to achieve a net bioenergetic benefit.</description><subject>Anthraquinones - metabolism</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Desulfovibrio vulgaris</subject><subject>Desulfovibrio vulgaris - genetics</subject><subject>Desulfovibrio vulgaris - metabolism</subject><subject>Energy Metabolism - genetics</subject><subject>Enzymes</subject><subject>Ferric Compounds - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genotype</subject><subject>Hydrogenase - metabolism</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Medical Microbiology</subject><subject>Metabolism</subject><subject>Metabolism. Enzymes</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Nitrilotriacetic acid</subject><subject>Original Paper</subject><subject>Oxidation-Reduction</subject><subject>Plant Sciences</subject><subject>Soil Science & Conservation</subject><subject>Sulfate reduction</subject><subject>Sulfates</subject><subject>Sulfates - metabolism</subject><issn>0003-6072</issn><issn>1572-9699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFksFu1DAQhi0EokvhAbiAhQS3wNiOY_uICqVIlThAz5bjTBZXSbzYSdG-PY6yohIHevKM5pt_7PlNyEsG7xmA-pAZ1JpXJawM06wSj8iOScUr0xjzmOwAQFQNKH5GnuV8W1LTaPWUnDEltWZc7AheYkrB05DiRBN2i59Didoj_YR5Gfp4F9oUIr1bhr1LIdOrMHQ4tTHFZf-T_i4ZnY8HpG7qKE6Y9kc64uzaOIQ80nGZ3TTn5-RJ74aML07nObm5_Pzj4qq6_vbl68XH68rXWs6VYB563wnZ1C1IUFJ0HIBLyVFq6WUL4BvDatM7qcABtp5pRN151dQKlDgn7zbdQ4q_FsyzHUP2OAxuwrhkq6DsTdbwIMgZl4wp8zAI2pRFropv_gFv45Km8lpbyswwI1Y1tkE-xZwT9vaQwujS0TKwq6V2s9Su4WqpFaXn1Ul4aUfs7jtOHhbg7Qlw2buhT27yIf_lygZrYYwuHN-4XErTHtP9Df83_fXW1Lto3b78AHvznQMTAFo0gkvxB8O9wUk</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Park, Hyung Soo</creator><creator>Lin, Shiping</creator><creator>Voordouw, Gerrit</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants</title><author>Park, Hyung Soo ; Lin, Shiping ; Voordouw, Gerrit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anthraquinones - metabolism</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Desulfovibrio vulgaris</topic><topic>Desulfovibrio vulgaris - genetics</topic><topic>Desulfovibrio vulgaris - metabolism</topic><topic>Energy Metabolism - genetics</topic><topic>Enzymes</topic><topic>Ferric Compounds - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genotype</topic><topic>Hydrogenase - metabolism</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Medical Microbiology</topic><topic>Metabolism</topic><topic>Metabolism. Enzymes</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Nitrilotriacetic acid</topic><topic>Original Paper</topic><topic>Oxidation-Reduction</topic><topic>Plant Sciences</topic><topic>Soil Science & Conservation</topic><topic>Sulfate reduction</topic><topic>Sulfates</topic><topic>Sulfates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyung Soo</creatorcontrib><creatorcontrib>Lin, Shiping</creatorcontrib><creatorcontrib>Voordouw, Gerrit</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Antonie van Leeuwenhoek</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hyung Soo</au><au>Lin, Shiping</au><au>Voordouw, Gerrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants</atitle><jtitle>Antonie van Leeuwenhoek</jtitle><stitle>Antonie van Leeuwenhoek</stitle><addtitle>Antonie Van Leeuwenhoek</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>93</volume><issue>1-2</issue><spage>79</spage><epage>85</epage><pages>79-85</pages><issn>0003-6072</issn><eissn>1572-9699</eissn><coden>ANLEDR</coden><abstract>Desulfovibrio vulgaris Hildenborough wild type and its hyn1, hyd and hmc mutants, lacking genes for periplasmic [NiFe] hydrogenase-1, periplasmic [FeFe] hydrogenase or the transmembrane high molecular weight cytochrome (Hmc) complex, respectively, were able to reduce Fe(III) chelated with nitrilotriacetic acid (NTA), but not insoluble ferric oxide, with lactate as the electron donor. The rate and extent of Fe(III)-NTA reduction followed the order hyn = WT > hmc >> hyd, suggesting that reduction of soluble Fe(III) is a periplasmic process that requires the presence of periplasmic [FeFe] hydrogenase. Reduction of Fe(III)-NTA was not coupled to cell growth. In fact cell concentrations declined when D. vulgaris was incubated with Fe(III)-NTA as the only electron acceptor. Wild type and mutant cells reducing a limiting concentration of sulfate (2 mM), reduced Fe(III)-NTA with similar rates. However, these were similarly incapable of catalyzing subsequent lactate-dependent reduction of Fe(III)-NTA to completion. Periplasmic reduction of Fe(III)-NTA appeared to inhibit the productive, sulfate-reducing metabolism of D. vulgaris, possibly because it prevents the cycling of reducing equivalents needed to achieve a net bioenergetic benefit.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>17588123</pmid><doi>10.1007/s10482-007-9181-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6072 |
ispartof | Antonie van Leeuwenhoek, 2008-02, Vol.93 (1-2), p.79-85 |
issn | 0003-6072 1572-9699 |
language | eng |
recordid | cdi_proquest_miscellaneous_70100540 |
source | Springer Nature |
subjects | Anthraquinones - metabolism Bacteria Bacteriology Biological and medical sciences Biomedical and Life Sciences Desulfovibrio vulgaris Desulfovibrio vulgaris - genetics Desulfovibrio vulgaris - metabolism Energy Metabolism - genetics Enzymes Ferric Compounds - metabolism Fundamental and applied biological sciences. Psychology Genotype Hydrogenase - metabolism Iron Iron - metabolism Life Sciences Marine Medical Microbiology Metabolism Metabolism. Enzymes Microbiology Mutation Nitrilotriacetic acid Original Paper Oxidation-Reduction Plant Sciences Soil Science & Conservation Sulfate reduction Sulfates Sulfates - metabolism |
title | Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferric%20iron%20reduction%20by%20Desulfovibrio%20vulgaris%20Hildenborough%20wild%20type%20and%20energy%20metabolism%20mutants&rft.jtitle=Antonie%20van%20Leeuwenhoek&rft.au=Park,%20Hyung%20Soo&rft.date=2008-02-01&rft.volume=93&rft.issue=1-2&rft.spage=79&rft.epage=85&rft.pages=79-85&rft.issn=0003-6072&rft.eissn=1572-9699&rft.coden=ANLEDR&rft_id=info:doi/10.1007/s10482-007-9181-3&rft_dat=%3Cproquest_cross%3E1896137801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-31c0fcd3564b050753d2002552e585c5b00c69149fa570a0ebc18ee8dc7647073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230191939&rft_id=info:pmid/17588123&rfr_iscdi=true |