Loading…

Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer's disease

Several factors have been implicated in Alzheimer's disease (AD) but there is no definite conclusion as to the main pathogenic agents. Mutations in the amyloid precursor protein (APP) that lead to increased production of amyloid β peptide (Aβ) are associated with the early-onset, familial for...

Full description

Saved in:
Bibliographic Details
Published in:Experimental physiology 2008-01, Vol.93 (1), p.116-120
Main Authors: Hamel, E., Nicolakakis, N., Aboulkassim, T., Ongali, B., Tong, X‐K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several factors have been implicated in Alzheimer's disease (AD) but there is no definite conclusion as to the main pathogenic agents. Mutations in the amyloid precursor protein (APP) that lead to increased production of amyloid β peptide (Aβ) are associated with the early-onset, familial forms of AD. However, in addition to ageing, the most common risk factors for the sporadic, prevalent form of AD are hypertension, hypercholesterolaemia, ischaemic stroke, the ApoE4 allele and diabetes, all characterized by a vascular pathology. In AD, the vascular pathology includes accumulation of Aβ in the vessel wall, vascular fibrosis, and other ultrastructural changes in constituent endothelial and smooth muscle cells. Moreover, the ensuing chronic cerebral hypoperfusion has been proposed as a determinant factor in the accompanying cognitive deficits. In transgenic mice that overexpress mutated forms of the human APP (APP mice), the increased production of Aβ results in vascular oxidative stress and loss of vasodilatory function. The culprit molecule, superoxide, triggers the synthesis of other reactive oxygen species and the sequestration of nitric oxide (NO), thus impairing resting cerebrovascular tone and NO-dependent dilatations. The Aβ-induced cerebrovascular dysfunction can be completely abrogated in aged APP mice with antioxidant therapy. In contrast, in mice that overproduce an active form of the cytokine transforming growth factor-β1 and recapitulate the vascular structural changes seen in AD, antioxidants have no beneficial effect on the accompanying cerebrovascular deficits. This review discusses the beneficial role and limitations of antioxidant therapy in AD cerebrovascular pathology.
ISSN:0958-0670
1469-445X
DOI:10.1113/expphysiol.2007.038729