Loading…

Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design

UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms l...

Full description

Saved in:
Bibliographic Details
Published in:Structure (London) 2008-01, Vol.16 (1), p.82-92
Main Authors: Wittmann, Julia G., Heinrich, Daniel, Gasow, Kathrin, Frey, Alexandra, Diederichsen, Ulf, Rudolph, Markus G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD.
ISSN:0969-2126
1878-4186
DOI:10.1016/j.str.2007.10.020