Loading…
Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design
UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms l...
Saved in:
Published in: | Structure (London) 2008-01, Vol.16 (1), p.82-92 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3 |
container_end_page | 92 |
container_issue | 1 |
container_start_page | 82 |
container_title | Structure (London) |
container_volume | 16 |
creator | Wittmann, Julia G. Heinrich, Daniel Gasow, Kathrin Frey, Alexandra Diederichsen, Ulf Rudolph, Markus G. |
description | UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD. |
doi_str_mv | 10.1016/j.str.2007.10.020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70199182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212607004315</els_id><sourcerecordid>70199182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi1ERbeFB-CCfOKWre3GjiNOaEtbpFatVDhbjj3peknsYDsLvXHjfXgkngSvdiVuPY1m9P2_NB9CbylZUkLF2WaZclwyQpqyLwkjL9CCykZWNZXiJVqQVrQVo0wco5OUNoQQxgl5hY6ppLLmUizQ74ccZ5PnCAmHHuc14Ot51B7fxZCddR4q_vfXn-o2-DCtQ5rWOgO-AKNjF34-DToBfpinKcSMNV6FrR7AZ3wLZq29SyPW3uL7GLbOQgEuox7hR4jfcB8ivojzY-lK7tG_Rke9HhK8OcxT9PXy05fVdXVzd_V59fGmMrUgubK1sC2jwnDBaddqyoVkWvQSqLWklsA06SlvzHlrOs6bTthOdK3Q0FsJfXd-it7ve6cYvs-QshpdMjAM2kOYk2oIbVsqWQHpHjQxpBShV1N0o45PihK1s682qthXO_u7U7FfMu8O5XM3gv2fOOguwIc9AOXFrYOoknHgDVgXwWRlg3um_h-e9Zjv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70199182</pqid></control><display><type>article</type><title>Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Wittmann, Julia G. ; Heinrich, Daniel ; Gasow, Kathrin ; Frey, Alexandra ; Diederichsen, Ulf ; Rudolph, Markus G.</creator><creatorcontrib>Wittmann, Julia G. ; Heinrich, Daniel ; Gasow, Kathrin ; Frey, Alexandra ; Diederichsen, Ulf ; Rudolph, Markus G.</creatorcontrib><description>UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2007.10.020</identifier><identifier>PMID: 18184586</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Drug Design ; Humans ; Kinetics ; Models, Molecular ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - metabolism ; Orotate Phosphoribosyltransferase - chemistry ; Orotate Phosphoribosyltransferase - metabolism ; Orotidine-5'-Phosphate Decarboxylase - chemistry ; Orotidine-5'-Phosphate Decarboxylase - drug effects ; Orotidine-5'-Phosphate Decarboxylase - metabolism ; Protein Conformation ; PROTEINS ; Uracil Nucleotides - chemistry ; Uracil Nucleotides - metabolism</subject><ispartof>Structure (London), 2008-01, Vol.16 (1), p.82-92</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3</citedby><cites>FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18184586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittmann, Julia G.</creatorcontrib><creatorcontrib>Heinrich, Daniel</creatorcontrib><creatorcontrib>Gasow, Kathrin</creatorcontrib><creatorcontrib>Frey, Alexandra</creatorcontrib><creatorcontrib>Diederichsen, Ulf</creatorcontrib><creatorcontrib>Rudolph, Markus G.</creatorcontrib><title>Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD.</description><subject>Drug Design</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Orotate Phosphoribosyltransferase - chemistry</subject><subject>Orotate Phosphoribosyltransferase - metabolism</subject><subject>Orotidine-5'-Phosphate Decarboxylase - chemistry</subject><subject>Orotidine-5'-Phosphate Decarboxylase - drug effects</subject><subject>Orotidine-5'-Phosphate Decarboxylase - metabolism</subject><subject>Protein Conformation</subject><subject>PROTEINS</subject><subject>Uracil Nucleotides - chemistry</subject><subject>Uracil Nucleotides - metabolism</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi1ERbeFB-CCfOKWre3GjiNOaEtbpFatVDhbjj3peknsYDsLvXHjfXgkngSvdiVuPY1m9P2_NB9CbylZUkLF2WaZclwyQpqyLwkjL9CCykZWNZXiJVqQVrQVo0wco5OUNoQQxgl5hY6ppLLmUizQ74ccZ5PnCAmHHuc14Ot51B7fxZCddR4q_vfXn-o2-DCtQ5rWOgO-AKNjF34-DToBfpinKcSMNV6FrR7AZ3wLZq29SyPW3uL7GLbOQgEuox7hR4jfcB8ivojzY-lK7tG_Rke9HhK8OcxT9PXy05fVdXVzd_V59fGmMrUgubK1sC2jwnDBaddqyoVkWvQSqLWklsA06SlvzHlrOs6bTthOdK3Q0FsJfXd-it7ve6cYvs-QshpdMjAM2kOYk2oIbVsqWQHpHjQxpBShV1N0o45PihK1s682qthXO_u7U7FfMu8O5XM3gv2fOOguwIc9AOXFrYOoknHgDVgXwWRlg3um_h-e9Zjv</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Wittmann, Julia G.</creator><creator>Heinrich, Daniel</creator><creator>Gasow, Kathrin</creator><creator>Frey, Alexandra</creator><creator>Diederichsen, Ulf</creator><creator>Rudolph, Markus G.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design</title><author>Wittmann, Julia G. ; Heinrich, Daniel ; Gasow, Kathrin ; Frey, Alexandra ; Diederichsen, Ulf ; Rudolph, Markus G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Drug Design</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Orotate Phosphoribosyltransferase - chemistry</topic><topic>Orotate Phosphoribosyltransferase - metabolism</topic><topic>Orotidine-5'-Phosphate Decarboxylase - chemistry</topic><topic>Orotidine-5'-Phosphate Decarboxylase - drug effects</topic><topic>Orotidine-5'-Phosphate Decarboxylase - metabolism</topic><topic>Protein Conformation</topic><topic>PROTEINS</topic><topic>Uracil Nucleotides - chemistry</topic><topic>Uracil Nucleotides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittmann, Julia G.</creatorcontrib><creatorcontrib>Heinrich, Daniel</creatorcontrib><creatorcontrib>Gasow, Kathrin</creatorcontrib><creatorcontrib>Frey, Alexandra</creatorcontrib><creatorcontrib>Diederichsen, Ulf</creatorcontrib><creatorcontrib>Rudolph, Markus G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittmann, Julia G.</au><au>Heinrich, Daniel</au><au>Gasow, Kathrin</au><au>Frey, Alexandra</au><au>Diederichsen, Ulf</au><au>Rudolph, Markus G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>16</volume><issue>1</issue><spage>82</spage><epage>92</epage><pages>82-92</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18184586</pmid><doi>10.1016/j.str.2007.10.020</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2008-01, Vol.16 (1), p.82-92 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_70199182 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Drug Design Humans Kinetics Models, Molecular Multienzyme Complexes - chemistry Multienzyme Complexes - metabolism Orotate Phosphoribosyltransferase - chemistry Orotate Phosphoribosyltransferase - metabolism Orotidine-5'-Phosphate Decarboxylase - chemistry Orotidine-5'-Phosphate Decarboxylase - drug effects Orotidine-5'-Phosphate Decarboxylase - metabolism Protein Conformation PROTEINS Uracil Nucleotides - chemistry Uracil Nucleotides - metabolism |
title | Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20the%20Human%20Orotidine-5%E2%80%B2-Monophosphate%20Decarboxylase%20Support%20a%20Covalent%20Mechanism%20and%20Provide%20a%20Framework%20for%20Drug%20Design&rft.jtitle=Structure%20(London)&rft.au=Wittmann,%20Julia%20G.&rft.date=2008-01-01&rft.volume=16&rft.issue=1&rft.spage=82&rft.epage=92&rft.pages=82-92&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2007.10.020&rft_dat=%3Cproquest_cross%3E70199182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70199182&rft_id=info:pmid/18184586&rfr_iscdi=true |