Loading…

Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design

UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms l...

Full description

Saved in:
Bibliographic Details
Published in:Structure (London) 2008-01, Vol.16 (1), p.82-92
Main Authors: Wittmann, Julia G., Heinrich, Daniel, Gasow, Kathrin, Frey, Alexandra, Diederichsen, Ulf, Rudolph, Markus G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3
cites cdi_FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3
container_end_page 92
container_issue 1
container_start_page 82
container_title Structure (London)
container_volume 16
creator Wittmann, Julia G.
Heinrich, Daniel
Gasow, Kathrin
Frey, Alexandra
Diederichsen, Ulf
Rudolph, Markus G.
description UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD.
doi_str_mv 10.1016/j.str.2007.10.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70199182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212607004315</els_id><sourcerecordid>70199182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi1ERbeFB-CCfOKWre3GjiNOaEtbpFatVDhbjj3peknsYDsLvXHjfXgkngSvdiVuPY1m9P2_NB9CbylZUkLF2WaZclwyQpqyLwkjL9CCykZWNZXiJVqQVrQVo0wco5OUNoQQxgl5hY6ppLLmUizQ74ccZ5PnCAmHHuc14Ot51B7fxZCddR4q_vfXn-o2-DCtQ5rWOgO-AKNjF34-DToBfpinKcSMNV6FrR7AZ3wLZq29SyPW3uL7GLbOQgEuox7hR4jfcB8ivojzY-lK7tG_Rke9HhK8OcxT9PXy05fVdXVzd_V59fGmMrUgubK1sC2jwnDBaddqyoVkWvQSqLWklsA06SlvzHlrOs6bTthOdK3Q0FsJfXd-it7ve6cYvs-QshpdMjAM2kOYk2oIbVsqWQHpHjQxpBShV1N0o45PihK1s682qthXO_u7U7FfMu8O5XM3gv2fOOguwIc9AOXFrYOoknHgDVgXwWRlg3um_h-e9Zjv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70199182</pqid></control><display><type>article</type><title>Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Wittmann, Julia G. ; Heinrich, Daniel ; Gasow, Kathrin ; Frey, Alexandra ; Diederichsen, Ulf ; Rudolph, Markus G.</creator><creatorcontrib>Wittmann, Julia G. ; Heinrich, Daniel ; Gasow, Kathrin ; Frey, Alexandra ; Diederichsen, Ulf ; Rudolph, Markus G.</creatorcontrib><description>UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2007.10.020</identifier><identifier>PMID: 18184586</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Drug Design ; Humans ; Kinetics ; Models, Molecular ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - metabolism ; Orotate Phosphoribosyltransferase - chemistry ; Orotate Phosphoribosyltransferase - metabolism ; Orotidine-5'-Phosphate Decarboxylase - chemistry ; Orotidine-5'-Phosphate Decarboxylase - drug effects ; Orotidine-5'-Phosphate Decarboxylase - metabolism ; Protein Conformation ; PROTEINS ; Uracil Nucleotides - chemistry ; Uracil Nucleotides - metabolism</subject><ispartof>Structure (London), 2008-01, Vol.16 (1), p.82-92</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3</citedby><cites>FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18184586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittmann, Julia G.</creatorcontrib><creatorcontrib>Heinrich, Daniel</creatorcontrib><creatorcontrib>Gasow, Kathrin</creatorcontrib><creatorcontrib>Frey, Alexandra</creatorcontrib><creatorcontrib>Diederichsen, Ulf</creatorcontrib><creatorcontrib>Rudolph, Markus G.</creatorcontrib><title>Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD.</description><subject>Drug Design</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Orotate Phosphoribosyltransferase - chemistry</subject><subject>Orotate Phosphoribosyltransferase - metabolism</subject><subject>Orotidine-5'-Phosphate Decarboxylase - chemistry</subject><subject>Orotidine-5'-Phosphate Decarboxylase - drug effects</subject><subject>Orotidine-5'-Phosphate Decarboxylase - metabolism</subject><subject>Protein Conformation</subject><subject>PROTEINS</subject><subject>Uracil Nucleotides - chemistry</subject><subject>Uracil Nucleotides - metabolism</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi1ERbeFB-CCfOKWre3GjiNOaEtbpFatVDhbjj3peknsYDsLvXHjfXgkngSvdiVuPY1m9P2_NB9CbylZUkLF2WaZclwyQpqyLwkjL9CCykZWNZXiJVqQVrQVo0wco5OUNoQQxgl5hY6ppLLmUizQ74ccZ5PnCAmHHuc14Ot51B7fxZCddR4q_vfXn-o2-DCtQ5rWOgO-AKNjF34-DToBfpinKcSMNV6FrR7AZ3wLZq29SyPW3uL7GLbOQgEuox7hR4jfcB8ivojzY-lK7tG_Rke9HhK8OcxT9PXy05fVdXVzd_V59fGmMrUgubK1sC2jwnDBaddqyoVkWvQSqLWklsA06SlvzHlrOs6bTthOdK3Q0FsJfXd-it7ve6cYvs-QshpdMjAM2kOYk2oIbVsqWQHpHjQxpBShV1N0o45PihK1s682qthXO_u7U7FfMu8O5XM3gv2fOOguwIc9AOXFrYOoknHgDVgXwWRlg3um_h-e9Zjv</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Wittmann, Julia G.</creator><creator>Heinrich, Daniel</creator><creator>Gasow, Kathrin</creator><creator>Frey, Alexandra</creator><creator>Diederichsen, Ulf</creator><creator>Rudolph, Markus G.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design</title><author>Wittmann, Julia G. ; Heinrich, Daniel ; Gasow, Kathrin ; Frey, Alexandra ; Diederichsen, Ulf ; Rudolph, Markus G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Drug Design</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Orotate Phosphoribosyltransferase - chemistry</topic><topic>Orotate Phosphoribosyltransferase - metabolism</topic><topic>Orotidine-5'-Phosphate Decarboxylase - chemistry</topic><topic>Orotidine-5'-Phosphate Decarboxylase - drug effects</topic><topic>Orotidine-5'-Phosphate Decarboxylase - metabolism</topic><topic>Protein Conformation</topic><topic>PROTEINS</topic><topic>Uracil Nucleotides - chemistry</topic><topic>Uracil Nucleotides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittmann, Julia G.</creatorcontrib><creatorcontrib>Heinrich, Daniel</creatorcontrib><creatorcontrib>Gasow, Kathrin</creatorcontrib><creatorcontrib>Frey, Alexandra</creatorcontrib><creatorcontrib>Diederichsen, Ulf</creatorcontrib><creatorcontrib>Rudolph, Markus G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittmann, Julia G.</au><au>Heinrich, Daniel</au><au>Gasow, Kathrin</au><au>Frey, Alexandra</au><au>Diederichsen, Ulf</au><au>Rudolph, Markus G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>16</volume><issue>1</issue><spage>82</spage><epage>92</epage><pages>82-92</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5′-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO2 product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18184586</pmid><doi>10.1016/j.str.2007.10.020</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-2126
ispartof Structure (London), 2008-01, Vol.16 (1), p.82-92
issn 0969-2126
1878-4186
language eng
recordid cdi_proquest_miscellaneous_70199182
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Drug Design
Humans
Kinetics
Models, Molecular
Multienzyme Complexes - chemistry
Multienzyme Complexes - metabolism
Orotate Phosphoribosyltransferase - chemistry
Orotate Phosphoribosyltransferase - metabolism
Orotidine-5'-Phosphate Decarboxylase - chemistry
Orotidine-5'-Phosphate Decarboxylase - drug effects
Orotidine-5'-Phosphate Decarboxylase - metabolism
Protein Conformation
PROTEINS
Uracil Nucleotides - chemistry
Uracil Nucleotides - metabolism
title Structures of the Human Orotidine-5′-Monophosphate Decarboxylase Support a Covalent Mechanism and Provide a Framework for Drug Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20the%20Human%20Orotidine-5%E2%80%B2-Monophosphate%20Decarboxylase%20Support%20a%20Covalent%20Mechanism%20and%20Provide%20a%20Framework%20for%20Drug%20Design&rft.jtitle=Structure%20(London)&rft.au=Wittmann,%20Julia%20G.&rft.date=2008-01-01&rft.volume=16&rft.issue=1&rft.spage=82&rft.epage=92&rft.pages=82-92&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2007.10.020&rft_dat=%3Cproquest_cross%3E70199182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-d46d9216c5651b9a15682a6f8e1dd048e2a0f157c39cb557b6db6b96aefd8efb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70199182&rft_id=info:pmid/18184586&rfr_iscdi=true