Loading…
Pest control through viral disease: Mathematical modeling and analysis
This paper deals with the mathematical modeling of pest management under viral infection (i.e. using viral pesticide) and analysis of its essential mathematical features. As the viral infection induces host lysis which releases more virus into the environment, on the average ‘ κ ’ viruses per host,...
Saved in:
Published in: | Journal of theoretical biology 2006-01, Vol.238 (1), p.177-197 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the mathematical modeling of pest management under viral infection (i.e. using viral pesticide) and analysis of its essential mathematical features. As the viral infection induces host lysis which releases more virus into the environment, on the average ‘
κ
’ viruses per host,
κ
∈
(
1
,
∞
)
, the ‘virus replication parameter’ is chosen as the main parameter on which the dynamics of the infection depends. We prove that there exists a threshold value
κ
0
beyond which the endemic equilibrium bifurcates from the free disease one. Still for increasing
κ
values, the endemic equilibrium bifurcates towards a periodic solution. We further analyse the orbital stability of the periodic orbits arising from bifurcation by applying Poor's condition. A concluding discussion with numerical simulation of the model is then presented. |
---|---|
ISSN: | 0022-5193 1095-8541 |
DOI: | 10.1016/j.jtbi.2005.05.019 |