Loading…
Topological characterization of quantum phase transitions in a spin-1/2 model
We have introduced a novel Majorana representation of S=1/2 spins using the Jordan-Wigner transformation and have shown that a generalized spin model of Kitaev defined on a brick-wall lattice is equivalent to a model of noninteracting Majorana fermions with Z2 gauge fields without redundant degrees...
Saved in:
Published in: | Physical review letters 2007-02, Vol.98 (8), p.087204-087204, Article 087204 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have introduced a novel Majorana representation of S=1/2 spins using the Jordan-Wigner transformation and have shown that a generalized spin model of Kitaev defined on a brick-wall lattice is equivalent to a model of noninteracting Majorana fermions with Z2 gauge fields without redundant degrees of freedom. The quantum phase transitions of the system at zero temperature are found to be of topological type and can be characterized by nonlocal string order parameters (SOP). In appropriate dual representations, these SOP become local order parameters and the basic concept of Landau theory of continuous phase transition can be applied. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.98.087204 |