Loading…

N-Phosphino-amidines and -guanidines: synthesis, structure and P,N-chelate chemistry

The syntheses of the cyclic N-phosphino-amidines and -guanidines Ph2PN(Pri)C(NPri2)N(Pri) ( 1) and Ph2PN(c-Hex)C(R)N(c-Hex) [R = piperazino ( 2), morpholino ( 3), Me ( 4), and Ph ( 5)] are reported. DFT studies have identified the preferred structures for compounds 1-5 with the E-configuration being...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2008-01 (8), p.1043-1054
Main Authors: Baiget, Lise, Batsanov, Andrei S, Dyer, Philip W, Fox, Mark A, Hanton, Martin J, Howard, Judith A K, Lane, Philip K, Solomon, Sophia A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The syntheses of the cyclic N-phosphino-amidines and -guanidines Ph2PN(Pri)C(NPri2)N(Pri) ( 1) and Ph2PN(c-Hex)C(R)N(c-Hex) [R = piperazino ( 2), morpholino ( 3), Me ( 4), and Ph ( 5)] are reported. DFT studies have identified the preferred structures for compounds 1-5 with the E-configuration being the most stable form for the N-phosphino-amidines, while the Z-conformation is preferred for the N-phosphino-guanidines something that highlights the potential of such systems to act as kappa2-P,N-chelates. The differences in donor characteristics of 2-5 have been probed through the study of their corresponding P(V) selenide derivatives ( 6-9) and their complexes with the cis-RhCl(CO) (10-12) and cis-PdCl2 (13-17) fragments. In line with the DFT studies both the amidines and guanidines are found to coordinate as kappa2-P,N-chelates, with the latter being moderately weaker donor ligands. The molecular structures of compounds 3 and 4, together with those of the Rh and Pd complexes 10 and 15, respectively, have been determined in the solid state by X-ray crystallography, the latter confirming bidentate kappa2-P,N-chelation.
ISSN:1477-9226
1477-9234
DOI:10.1039/b715736c