Loading…
RNA expression analysis of formalin-fixed paraffin-embedded tumors
RNA expression analysis is an important tool in cancer research, but a limitation has been the requirement for high-quality RNA, generally derived from frozen samples. Such tumor sets are often small and lack clinical annotation, whereas formalin-fixed paraffin-embedded (FFPE) materials are abundant...
Saved in:
Published in: | Laboratory investigation 2007-04, Vol.87 (4), p.383-391 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | RNA expression analysis is an important tool in cancer research, but a limitation has been the requirement for high-quality RNA, generally derived from frozen samples. Such tumor sets are often small and lack clinical annotation, whereas formalin-fixed paraffin-embedded (FFPE) materials are abundant. Although RT-PCR-based methods from FFPE samples are finding clinical application, genome-wide microarray analysis has proven difficult. Here, we report expression profiling on RNA from 157 FFPE tumors. RNA was extracted from 2- to 8-year-old FFPE or frozen tumors of known and unknown histologies. Total RNA was analyzed, reverse-transcribed and used for the synthesis of labeled aRNA after two rounds of amplification. Labeled aRNA was hybridized to a 3′-based 22K spot oligonucleotide arrays, and compared to a labeled reference by two-color microarray analysis. After normalization, gene expression profiles were compared by unsupervised hierarchical clustering. Using this approach, at least 24% of unselected FFPE samples produced RNA of sufficient quality for microarray analysis. From our initial studies, we determined criteria based on spectrophotometric analyses and a novel TaqMan-based assay to predict which samples were of sufficient quality for microarray analysis before hybridization. These criteria were validated on an independent set of tumors with a 100% success rate (20 of 20). Unsupervised analysis of informative gene expression profiles distinguished tumor type and subtype, and identified tumor tissue of origin in three unclassified carcinomas. Although only a minority of FFPE blocks could be analyzed, we show that informative RNA expression analysis can be derived from selected FFPE samples. |
---|---|
ISSN: | 0023-6837 1530-0307 |
DOI: | 10.1038/labinvest.3700529 |