Loading…

The Drosophila Circadian Network Is a Seasonal Timer

Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2007-04, Vol.129 (1), p.207-219
Main Authors: Stoleru, Dan, Nawathean, Pipat, Fernández, María de la Paz, Menet, Jerome S., Ceriani, M. Fernanda, Rosbash, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. We have manipulated separately the circadian photoentrainment pathway within E- and M-cells and show that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season.
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2007.02.038