Loading…

Conformationally Sensitive Reactivity to Permeant Sulfhydryl Reagents of Cysteine Residues Engineered into Helical Hairpin 1 of the Glutamate Transporter GLT-1

In the central nervous system, glutamate transporters terminate the actions of this neurotransmitter by concentrating it into cells surrounding the synapse by a process involving sodium and proton cotransport followed by countertransport of potassium. These transporters contain two oppositely orient...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmacology 2007-05, Vol.71 (5), p.1341-1348
Main Authors: Shlaifer, Irina, Kanner, Baruch I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the central nervous system, glutamate transporters terminate the actions of this neurotransmitter by concentrating it into cells surrounding the synapse by a process involving sodium and proton cotransport followed by countertransport of potassium. These transporters contain two oppositely oriented helical hairpins 1 and 2. Hairpin 1 originates from the cytoplasm, but its tip is close to that of hairpin 2, which enters the transporter's lumen from the extracellular side. Here we address the question of whether hairpin 1 and/or domains surrounding it undergo conformational changes during the transport cycle. Therefore, we probed the reactivity of cysteines introduced into hairpin 1 and the cytoplasmic ends of transmembrane domains 6, 7, and 8 of the GLT-1 transporter to membrane-permeant N -ethylmaleimide. In each domain, except for transmembrane domain 6, cysteine mutants were found in which the inhibition of d -[ 3 H]aspartate transport by the sulfhydryl reagent was increased when external sodium was replaced by potassium, a condition expected to increase the proportion of cytoplasmic-facing transporters. Conversely, the nontransportable blocker kainate protected against the inhibition in several of these mutants, presumably by locking the transporter in an outward-facing conformation. Moreover, external potassium decreased the oxidative cross-linking of two cysteines, each introduced at the tip of each hairpin. Our results are consistent with a model based on the crystal structure of an archeal homolog. According to this model, the inward movement of hairpin 1 results in the opening of a pathway between the binding pocket and the cytoplasm, lined by parts of transmembrane domains 7 and 8.
ISSN:0026-895X
1521-0111
DOI:10.1124/mol.106.032607