Loading…

Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains

Development of a heterologous system for the production of homogeneous sugar structures has the potential to elucidate structure-function relationships of glycoproteins. In the current study, we used an artificial O-glycosylation pathway to produce an O-fucosylated epidermal growth factor (EGF) doma...

Full description

Saved in:
Bibliographic Details
Published in:Glycobiology (Oxford) 2008-04, Vol.18 (4), p.303-314
Main Authors: Chigira, Yuko, Oka, Takuji, Okajima, Tetsuya, Jigami, Yoshifumi
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Development of a heterologous system for the production of homogeneous sugar structures has the potential to elucidate structure-function relationships of glycoproteins. In the current study, we used an artificial O-glycosylation pathway to produce an O-fucosylated epidermal growth factor (EGF) domain in Saccharomyces cerevisiae. The in vivo O-fucosylation system was constructed via expression of genes that encode protein O-fucosyltransferase 1 and the EGF domain, along with genes whose protein products convert cytoplasmic GDP-mannose to GDP-fucose. This system allowed identification of an endogenous ability of S. cerevisiae to transport GDP-fucose. Moreover, expression of EGF domain mutants in this system revealed the different contribution of three disulfide bonds to in vivo O-fucosylation. In addition, lectin blotting revealed differences in the ability of fucose-specific lectin to bind the O-fucosylated structure of EGF domains from human factors VII and IX. Further introduction of the human fringe gene into yeast equipped with the in vivo O-fucosylation system facilitated the addition of N-acetylglucosamine to the EGF domain from factor IX but not from factor VII. The results suggest that engineering of an O-fucosylation system in yeast provides a powerful tool for producing proteins with homogenous carbohydrate chains. Such proteins can be used for the analysis of substrate specificity and the production of antibodies that recognize O-glycosylated EGF domains.
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/cwn008