Loading…

Interfacial Water Structure Controls Protein Conformation

A phenomenological theory of salt-induced Hofmeister phenomena is presented, based on a relation between protein solubility in salt solutions and protein−water interfacial tension. As a generalization of previous treatments, it implies that both kosmotropic salting out and chaotropic salting in are...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2007-05, Vol.111 (19), p.5344-5350
Main Authors: Dér, A, Kelemen, L, Fábián, L, Taneva, S. G, Fodor, E, Páli, T, Cupane, A, Cacace, M. G, Ramsden, J. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A phenomenological theory of salt-induced Hofmeister phenomena is presented, based on a relation between protein solubility in salt solutions and protein−water interfacial tension. As a generalization of previous treatments, it implies that both kosmotropic salting out and chaotropic salting in are manifested via salt-induced changes of the hydrophobic/hydrophilic properties of protein−water interfaces. The theory is applied to describe the salt-dependent free energy profiles of proteins as a function of their water-exposed surface area. On this basis, three classes of protein conformations have been distinguished, and their existence experimentally demonstrated using the examples of bacteriorhodopsin and myoglobin. The experimental results support the ability of the new formalism to account for the diverse manifestations of salt effects on protein conformation, dynamics, and stability, and to resolve the puzzle of chaotropes stabilizing certain proteins (and other anomalies). It is also shown that the relation between interfacial tension and protein structural stability is straightforwardly linked to protein conformational fluctuations, providing a keystone for the microscopic interpretation of Hofmeister effects. Implications of the results concerning the use of Hofmeister effects in the experimental study of protein function are discussed.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp066206p