Loading…

Assessing the statistical validity of proteomics based biomarkers

A strategy is presented for the statistical validation of discrimination models in proteomics studies. Several existing tools are combined to form a solid statistical basis for biomarker discovery that should precede a biochemical validation of any biomarker. These tools consist of permutation tests...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2007-06, Vol.592 (2), p.210-217
Main Authors: Smit, Suzanne, van Breemen, Mariëlle J., Hoefsloot, Huub C.J., Smilde, Age K., Aerts, Johannes M.F.G., de Koster, Chris G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A strategy is presented for the statistical validation of discrimination models in proteomics studies. Several existing tools are combined to form a solid statistical basis for biomarker discovery that should precede a biochemical validation of any biomarker. These tools consist of permutation tests, single and double cross-validation. The cross-validation steps can simply be combined with a new variable selection method, called rank products. The strategy is especially suited for the low-samples-to-variables-ratio (undersampling) case, as is often encountered in proteomics and metabolomics studies. As a classification method, principal component discriminant analysis is used; however, the methodology can be used with any classifier. A dataset containing serum samples from Gaucher patients and healthy controls serves as a test case. Double cross-validation shows that the sensitivity of the model is 89% and the specificity 90%. Potential putative biomarkers are identified using the novel variable selection method. Results from permutation tests support the choice of double cross-validation as the tool for determining error rates when the modelling procedure involves a tuneable parameter. This shows that even cross-validation does not guarantee unbiased results. The validation of discrimination models with a combination of permutation tests and double cross-validation helps to avoid erroneous results which may result from the undersampling.
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2007.04.043