Loading…

An Inductively Coupled Plasma Carbon Emission Detector for Aqueous Carbohydrate Separations by Liquid Chromatography

An inductively coupled plasma atomic emission spectrometer is used to detect carbon-containing compounds following separation by high-performance liquid chromatography. A calcium form ligand exchange column with distilled and deionized water as the mobile phase is used to separate carbohydrates. The...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2001-02, Vol.73 (3), p.453-457
Main Authors: Peters, Heather L, Levine, Keith E, Jones, Bradley T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a470t-92e482819fee83d003a5256eaf7d749b9a92f11f256ac44192aeaaab7b00828a3
cites cdi_FETCH-LOGICAL-a470t-92e482819fee83d003a5256eaf7d749b9a92f11f256ac44192aeaaab7b00828a3
container_end_page 457
container_issue 3
container_start_page 453
container_title Analytical chemistry (Washington)
container_volume 73
creator Peters, Heather L
Levine, Keith E
Jones, Bradley T
description An inductively coupled plasma atomic emission spectrometer is used to detect carbon-containing compounds following separation by high-performance liquid chromatography. A calcium form ligand exchange column with distilled and deionized water as the mobile phase is used to separate carbohydrates. The eluting species are detected by monitoring the carbon atomic emission line at 193.09 nm. The mass detection limits using a photomultiplier tube for sucrose and glucose are 50 ng, while that for fructose is 60 ng. The carbon emission detector should provide the same detection limit for any compound with a similar mass percent of carbon, whether or not the compound exhibits appreciable absorption characteristics. While the carbon emission detector will universally detect any organic compound, it will discriminate against species with high molar absorptivity that may be present at low concentration. Such species may act as interferences in chromatograms generated with conventional UV−visible absorption detectors. To demonstrate the utility of the carbon emission detector, three sugars (glucose, fructose, sucrose) are determined in apple, crangrape, and orange juice.
doi_str_mv 10.1021/ac000902i
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70610054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70610054</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-92e482819fee83d003a5256eaf7d749b9a92f11f256ac44192aeaaab7b00828a3</originalsourceid><addsrcrecordid>eNpl0c1u1DAQAGALgehSOPACyAKBxCEwdn7sHFdpaSutRFHLhYs1SRw2JYlTO0Hk7Zkqq60EB8vW-PNoZszYawGfBEjxGSsAyEG2T9hGpBKiTGv5lG0oGkdSAZywFyHcAQgBInvOToSQQqkk3bBpO_CroZ6rqf1tu4UXbh47W_PrDkOPvEBfuoGf920ILR3O7GSryXne0Nrez9bNYUX7pfY4WX5jR6QD4cDLhe_a-7mtebH3rsfJ_fQ47peX7FmDXbCvDvsp-_7l_La4jHZfL66K7S7CRMEU5dImWmqRN9bquKZmMJVpZrFRtUryMsdcNkI0FMMqSUQu0SJiqUoAeofxKfuw5h29o1rDZKiPynYdDg-FGwWZAEgTgm__gXdu9gPVZmhQWoNMMkIfV1R5F4K3jRl926NfjADz8A_m-A9k3xwSzmVv60d5GDyBdweAocKu8ThUbTg6nak4iUlFq2rDZP8cb9H_MgRUam6vbwxcfMt-XJ4Jo8m_Xz1W4bGF_8v7C3DVqmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217880246</pqid></control><display><type>article</type><title>An Inductively Coupled Plasma Carbon Emission Detector for Aqueous Carbohydrate Separations by Liquid Chromatography</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Peters, Heather L ; Levine, Keith E ; Jones, Bradley T</creator><creatorcontrib>Peters, Heather L ; Levine, Keith E ; Jones, Bradley T</creatorcontrib><description>An inductively coupled plasma atomic emission spectrometer is used to detect carbon-containing compounds following separation by high-performance liquid chromatography. A calcium form ligand exchange column with distilled and deionized water as the mobile phase is used to separate carbohydrates. The eluting species are detected by monitoring the carbon atomic emission line at 193.09 nm. The mass detection limits using a photomultiplier tube for sucrose and glucose are 50 ng, while that for fructose is 60 ng. The carbon emission detector should provide the same detection limit for any compound with a similar mass percent of carbon, whether or not the compound exhibits appreciable absorption characteristics. While the carbon emission detector will universally detect any organic compound, it will discriminate against species with high molar absorptivity that may be present at low concentration. Such species may act as interferences in chromatograms generated with conventional UV−visible absorption detectors. To demonstrate the utility of the carbon emission detector, three sugars (glucose, fructose, sucrose) are determined in apple, crangrape, and orange juice.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac000902i</identifier><identifier>PMID: 11217745</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Biological and medical sciences ; Carbohydrates - isolation &amp; purification ; Carbon ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography, High Pressure Liquid - methods ; Emissions ; Exact sciences and technology ; Food industries ; Fundamental and applied biological sciences. Psychology ; Non alcoholic beverage industries and mineral waters ; Other chromatographic methods ; Sensitivity and Specificity ; Spectrophotometry, Atomic - instrumentation ; Spectrum analysis</subject><ispartof>Analytical chemistry (Washington), 2001-02, Vol.73 (3), p.453-457</ispartof><rights>Copyright © 2001 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 1, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-92e482819fee83d003a5256eaf7d749b9a92f11f256ac44192aeaaab7b00828a3</citedby><cites>FETCH-LOGICAL-a470t-92e482819fee83d003a5256eaf7d749b9a92f11f256ac44192aeaaab7b00828a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=867343$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11217745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Heather L</creatorcontrib><creatorcontrib>Levine, Keith E</creatorcontrib><creatorcontrib>Jones, Bradley T</creatorcontrib><title>An Inductively Coupled Plasma Carbon Emission Detector for Aqueous Carbohydrate Separations by Liquid Chromatography</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>An inductively coupled plasma atomic emission spectrometer is used to detect carbon-containing compounds following separation by high-performance liquid chromatography. A calcium form ligand exchange column with distilled and deionized water as the mobile phase is used to separate carbohydrates. The eluting species are detected by monitoring the carbon atomic emission line at 193.09 nm. The mass detection limits using a photomultiplier tube for sucrose and glucose are 50 ng, while that for fructose is 60 ng. The carbon emission detector should provide the same detection limit for any compound with a similar mass percent of carbon, whether or not the compound exhibits appreciable absorption characteristics. While the carbon emission detector will universally detect any organic compound, it will discriminate against species with high molar absorptivity that may be present at low concentration. Such species may act as interferences in chromatograms generated with conventional UV−visible absorption detectors. To demonstrate the utility of the carbon emission detector, three sugars (glucose, fructose, sucrose) are determined in apple, crangrape, and orange juice.</description><subject>Analytical chemistry</subject><subject>Biological and medical sciences</subject><subject>Carbohydrates - isolation &amp; purification</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Emissions</subject><subject>Exact sciences and technology</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Non alcoholic beverage industries and mineral waters</subject><subject>Other chromatographic methods</subject><subject>Sensitivity and Specificity</subject><subject>Spectrophotometry, Atomic - instrumentation</subject><subject>Spectrum analysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpl0c1u1DAQAGALgehSOPACyAKBxCEwdn7sHFdpaSutRFHLhYs1SRw2JYlTO0Hk7Zkqq60EB8vW-PNoZszYawGfBEjxGSsAyEG2T9hGpBKiTGv5lG0oGkdSAZywFyHcAQgBInvOToSQQqkk3bBpO_CroZ6rqf1tu4UXbh47W_PrDkOPvEBfuoGf920ILR3O7GSryXne0Nrez9bNYUX7pfY4WX5jR6QD4cDLhe_a-7mtebH3rsfJ_fQ47peX7FmDXbCvDvsp-_7l_La4jHZfL66K7S7CRMEU5dImWmqRN9bquKZmMJVpZrFRtUryMsdcNkI0FMMqSUQu0SJiqUoAeofxKfuw5h29o1rDZKiPynYdDg-FGwWZAEgTgm__gXdu9gPVZmhQWoNMMkIfV1R5F4K3jRl926NfjADz8A_m-A9k3xwSzmVv60d5GDyBdweAocKu8ThUbTg6nak4iUlFq2rDZP8cb9H_MgRUam6vbwxcfMt-XJ4Jo8m_Xz1W4bGF_8v7C3DVqmQ</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Peters, Heather L</creator><creator>Levine, Keith E</creator><creator>Jones, Bradley T</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010201</creationdate><title>An Inductively Coupled Plasma Carbon Emission Detector for Aqueous Carbohydrate Separations by Liquid Chromatography</title><author>Peters, Heather L ; Levine, Keith E ; Jones, Bradley T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-92e482819fee83d003a5256eaf7d749b9a92f11f256ac44192aeaaab7b00828a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Analytical chemistry</topic><topic>Biological and medical sciences</topic><topic>Carbohydrates - isolation &amp; purification</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Emissions</topic><topic>Exact sciences and technology</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Non alcoholic beverage industries and mineral waters</topic><topic>Other chromatographic methods</topic><topic>Sensitivity and Specificity</topic><topic>Spectrophotometry, Atomic - instrumentation</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Heather L</creatorcontrib><creatorcontrib>Levine, Keith E</creatorcontrib><creatorcontrib>Jones, Bradley T</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Heather L</au><au>Levine, Keith E</au><au>Jones, Bradley T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inductively Coupled Plasma Carbon Emission Detector for Aqueous Carbohydrate Separations by Liquid Chromatography</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>73</volume><issue>3</issue><spage>453</spage><epage>457</epage><pages>453-457</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>An inductively coupled plasma atomic emission spectrometer is used to detect carbon-containing compounds following separation by high-performance liquid chromatography. A calcium form ligand exchange column with distilled and deionized water as the mobile phase is used to separate carbohydrates. The eluting species are detected by monitoring the carbon atomic emission line at 193.09 nm. The mass detection limits using a photomultiplier tube for sucrose and glucose are 50 ng, while that for fructose is 60 ng. The carbon emission detector should provide the same detection limit for any compound with a similar mass percent of carbon, whether or not the compound exhibits appreciable absorption characteristics. While the carbon emission detector will universally detect any organic compound, it will discriminate against species with high molar absorptivity that may be present at low concentration. Such species may act as interferences in chromatograms generated with conventional UV−visible absorption detectors. To demonstrate the utility of the carbon emission detector, three sugars (glucose, fructose, sucrose) are determined in apple, crangrape, and orange juice.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11217745</pmid><doi>10.1021/ac000902i</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2001-02, Vol.73 (3), p.453-457
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70610054
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical chemistry
Biological and medical sciences
Carbohydrates - isolation & purification
Carbon
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography, High Pressure Liquid - methods
Emissions
Exact sciences and technology
Food industries
Fundamental and applied biological sciences. Psychology
Non alcoholic beverage industries and mineral waters
Other chromatographic methods
Sensitivity and Specificity
Spectrophotometry, Atomic - instrumentation
Spectrum analysis
title An Inductively Coupled Plasma Carbon Emission Detector for Aqueous Carbohydrate Separations by Liquid Chromatography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inductively%20Coupled%20Plasma%20Carbon%20Emission%20Detector%20for%20Aqueous%20Carbohydrate%20Separations%20by%20Liquid%20Chromatography&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Peters,%20Heather%20L&rft.date=2001-02-01&rft.volume=73&rft.issue=3&rft.spage=453&rft.epage=457&rft.pages=453-457&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac000902i&rft_dat=%3Cproquest_cross%3E70610054%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a470t-92e482819fee83d003a5256eaf7d749b9a92f11f256ac44192aeaaab7b00828a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217880246&rft_id=info:pmid/11217745&rfr_iscdi=true