Loading…

Gap-junctional communication mediates parathyroid hormone stimulation of mineralization in osteoblastic cultures

Previously we showed that physiological levels of parathyroid hormone (PTH) can increase the mineralization of extracellular matrix (ECM) by osteoblast-like cells in vitro. In this study, we assess the role of gap-junctional intercellular communication (GJC) in the PTH-enhanced mineralization of ECM...

Full description

Saved in:
Bibliographic Details
Published in:Bone (New York, N.Y.) N.Y.), 2001, Vol.28 (1), p.38-44
Main Authors: Schiller, P.C, D’Ippolito, G, Balkan, W, Roos, B.A, Howard, G.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previously we showed that physiological levels of parathyroid hormone (PTH) can increase the mineralization of extracellular matrix (ECM) by osteoblast-like cells in vitro. In this study, we assess the role of gap-junctional intercellular communication (GJC) in the PTH-enhanced mineralization of ECM in MC3T3-E1 cells, a murine culture model of osteoblastic differentiation. Messenger RNA and protein for connexin 43 (Cx43), the major component of MC3T3-E1 gap junctions, and GJC increased as the cells progressed toward a mature phenotype. Immunocytochemistry showed accumulation of Cx43 at the area of close contact between cells. The timing of the PTH treatment that increased matrix mineralization in these cells coincided with the highest expression of Cx43 and GJC. Administration of 18-α-glycyrrhetinic acid (AGA) promptly blocked GJC in cultures of MC3T3-E1 cells in a dose-dependent and reversible manner at all times tested during the culture period. Treatment with AGA, but not with an inactive analog, reversed the PTH-induced ECM mineralization. These data suggest that GJC mediates anabolic actions of PTH related to osteoblast-mediated mineralization.
ISSN:8756-3282
1873-2763
DOI:10.1016/S8756-3282(00)00412-9