Loading…

ammonium-inactivated cyanobacterial glutamine synthetase I is reactivated in vivo by a mechanism involving proteolytic removal of its inactivating factors

The Synechocystis sp. PCC 6803 glutamine synthetase type I (GS) activity is controlled by a process that involves protein-protein interaction with two inactivating factors (IF7 and IF17). Following addition of ammonium, the genes encoding these proteins, gifA and gifB, respectively, are derrepressed...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2007-07, Vol.65 (1), p.166-179
Main Authors: Galmozzi, Carla V, Fernández-Avila, M. Jesús, Reyes, José C, Florencio, Francisco J, Muro-Pastor, M. Isabel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Synechocystis sp. PCC 6803 glutamine synthetase type I (GS) activity is controlled by a process that involves protein-protein interaction with two inactivating factors (IF7 and IF17). Following addition of ammonium, the genes encoding these proteins, gifA and gifB, respectively, are derrepressed, leading to the synthesis of IF7 and IF17 and consequently GS is inactivated. Upon ammonium removal, the GS activity rapidly returns to the initial level within 20 min. In this study, we analyse the mechanism underlying GS reactivation and find that this process involves IF7 and IF17 degradation. We show that the presence of ammonium as nitrogen source enhances IF17 but not IF7 stability independently of gif gene transcription. Studies with Synechocystis crude extracts under different conditions revealed that IF7 and IF17 display different stabilities in vitro. We found that IF7 is degraded in vitro by the activity of metalloproteases. Furthermore, the involvement of soluble processing metallopeptidases in IF7 degradation has also been demonstrated in vivo, by analysing Synechocystis mutant strains devoid of genes of the prp family. Finally, using a Synechocystis strain lacking GS type I, we establish the crucial role of the target protein GS for in vivo IF7 and IF17 stability.
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.2007.05773.x