Loading…

Alternatives to allogeneic blood transfusions

Inherent risks and increasing costs of allogeneic transfusions underline the socioeconomic relevance of safe and effective alternatives to banked blood. The safety limits of a restrictive transfusion policy are given by a patient's individual tolerance of acute normovolaemic anaemia. Iatrogenic...

Full description

Saved in:
Bibliographic Details
Published in:Best practice & research. Clinical anaesthesiology 2007-06, Vol.21 (2), p.221-239
Main Authors: Pape, Andreas, Habler, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inherent risks and increasing costs of allogeneic transfusions underline the socioeconomic relevance of safe and effective alternatives to banked blood. The safety limits of a restrictive transfusion policy are given by a patient's individual tolerance of acute normovolaemic anaemia. Iatrogenic attempts to increase tolerance of anaemia are helpful in avoiding premature blood transfusions while at the same time maintaining adequate tissue oxygenation. Autologous transfusion techniques include preoperative autologous blood donation (PAD), acute normovolaemic haemodilution (ANH), and intraoperative cell salvage (ICS). The efficacy of PAD and ANH can be augmented by supplemental iron and/or erythropoietin. PAD is only cost-effective when based on a meticulous donation/transfusion plan calculated for the individual patient, and still carries the risk of mistransfusion (clerical error). In contrast, ANH has almost no risks and is more cost-effective. A significant reduction in allogeneic blood transfusions can also be achieved by ICS. Currently, some controversy regarding contraindications of ICS needs to be resolved. Artificial oxygen carriers based on perfluorocarbon (PFC) or haemoglobin (haemoglobin-based oxygen carriers, HBOCs) are attractive alternatives to allogeneic red blood cells. Nevertheless, to date no artificial oxygen carrier is available for routine clinical use, and further studies are needed to show the safety and efficacy of these substances.
ISSN:1521-6896
1532-169X
DOI:10.1016/j.bpa.2007.02.004