Loading…
Processing of the Human Heparanase Precursor and Evidence That the Active Enzyme Is a Heterodimer
Human platelet heparanase has been purified to homogeneity and shown to consist of two, non-covalently associated polypeptide chains of molecular masses 50 and 8 kDa. Protein sequencing provided the basis for determination of the full-length cDNA for this novel protein. Based upon this information a...
Saved in:
Published in: | The Journal of biological chemistry 1999-10, Vol.274 (42), p.29587-29590 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human platelet heparanase has been purified to homogeneity and shown to consist of two, non-covalently associated polypeptide chains of molecular masses 50 and 8 kDa. Protein sequencing provided the basis for determination of the full-length cDNA for this novel protein. Based upon this information and results from protein analysis and mass spectrometry, we propose a scheme to define the structural organization of heparanase in relation to its precursor forms, proheparanase and pre-proheparanase. The 8- and 50-kDa chains which make up the active enzyme reside, respectively, at the NH2- and COOH-terminal regions of the inactive precursor, proheparanase. The heparanase heterodimer is produced by excision and loss of an internal linking segment. This paper is the first to suggest that human heparanase is a two-chain enzyme. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.274.42.29587 |