Loading…
A method for the measurement of catechol-O-methyltransferase activity using norepinephrine, an endogenous substrate
We propose a highly sensitive method for the measurement of catechol-O-methyltransferase (COMT) activity with norepinephrine (NE), an endogenous native substrate. The product, normetanephrine, was determined by high-performance liquid chromatography (HPLC)-peroxyoxalate chemiluminescence reaction de...
Saved in:
Published in: | Analyst (London) 2001-01, Vol.126 (5), p.637-640 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a highly sensitive method for the measurement of catechol-O-methyltransferase (COMT) activity with norepinephrine (NE), an endogenous native substrate. The product, normetanephrine, was determined by high-performance liquid chromatography (HPLC)-peroxyoxalate chemiluminescence reaction detection or, if required, less sensitive fluorescence detection. For the measurement of membrane-bound (MB)-COMT activity in the rat erythrocyte, the HPLC-peroxyoxalate chemiluminescence reaction detection was employed. Soluble (S)- and MB-COMT activities in the rat erythrocyte were 22.9 +/- 2.5 and 4.62 +/- 1.23 pmol min-1 (mg protein)-1, respectively (n = 5). The Km values obtained for S- and MB-COMT were 366 +/- 31 mumol l-1 and 12.0 +/- 1.1 mumol l-1, respectively (n = 5), suggesting that the use of NE as a substrate would give more precise information on the role of both isoenzymes. However, with dihydroxybenzoic acid as an artificial substrate, the Km values for S- and MB-COMT were similar, with values of 69.2 +/- 11.4 mumol l-1 and 72.2 +/- 9.2 mumol l-1, respectively. The proposed method is thought to be useful for the measurement of both S-COMT and MB-COMT activities, and would give us critical information on the role of metabolism of catecholamines in rat tissues. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/b100119l |