Loading…

Electrocatalytic Detection of NADH and Glycerol by NAD+-Modified Carbon Electrodes

The electrochemical oxidation of the adenine moiety in NAD+ and other adenine nucleotides at carbon paste electrodes gives rise to redox-active products which strongly adsorb on the electrode surface. Carbon paste electrodes modified with the oxidation products of NAD+ show excellent electrocatalyti...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2000-02, Vol.72 (3), p.520-527
Main Authors: Álvarez-González, M. Isabel, Saidman, Silvana B, Lobo-Castañón, M. Jesús, Miranda-Ordieres, Arturo J, Tuñón-Blanco, Paulino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a508t-1f3bee6449983948f12e43e5ca83f50a9975eb8c64565c7a2e57353fd65705133
cites cdi_FETCH-LOGICAL-a508t-1f3bee6449983948f12e43e5ca83f50a9975eb8c64565c7a2e57353fd65705133
container_end_page 527
container_issue 3
container_start_page 520
container_title Analytical chemistry (Washington)
container_volume 72
creator Álvarez-González, M. Isabel
Saidman, Silvana B
Lobo-Castañón, M. Jesús
Miranda-Ordieres, Arturo J
Tuñón-Blanco, Paulino
description The electrochemical oxidation of the adenine moiety in NAD+ and other adenine nucleotides at carbon paste electrodes gives rise to redox-active products which strongly adsorb on the electrode surface. Carbon paste electrodes modified with the oxidation products of NAD+ show excellent electrocatalytic activity toward NADH oxidation, reducing its overpotential by about 400 mV. The rate constant for the catalytic oxidation of NADH, determined by rotating disk electrode measurements and extrapolation to zero concentration of NADH, was found to be 2.5 × 105 M-1 s-1. The catalytic oxidation current allows the amperometric detection of NADH at an applied potential of +50 mV (Ag/AgCl) with a detection limit of 4.0 × 10-7 M and linear response up to 1.0 × 10-5 M NADH. These modified electrodes can be used as amperometric transducers in the design of biosensors based on coupled dehydrogenase enzymes and, in fact, we have designed an amperometric biosensor for glycerol based on the glycerol dehydrogenase (GlDH) system. The enzyme GlDH and its cofactor NAD+ were co-immobilized in a carbon paste electrode using an electropolymerized layer of nonconducting poly(o-phenylenediamine) (PPD). After partial oxidation of the immobilized NAD+, the modified electrode allows the amperometric detection of the NADH enzymatically obtained at applied potential above 0 V (Ag/AgCl). The resulting biosensor shows a fast and linear response to glycerol within the concentration range of 1.0 × 10-6−1.0 × 10-4 M with a detection limit of 4.3 × 10-7 M. The amperometric response remains stable for at least 3 days. The biosensor was applied to the determination of glycerol in a plant-extract syrup, with results in good agreement with those for the standard spectrophotometric method.
doi_str_mv 10.1021/ac9908344
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70928712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70928712</sourcerecordid><originalsourceid>FETCH-LOGICAL-a508t-1f3bee6449983948f12e43e5ca83f50a9975eb8c64565c7a2e57353fd65705133</originalsourceid><addsrcrecordid>eNpl0F1rFDEUBuAgil2rF_4BGRQFkdGTr0lyWbZ1K6xabPU2ZDInMHV20iaz4P57s8yyil4FTh5eznkJeU7hPQVGPzhvDGguxAOyoJJB3WjNHpIFAPCaKYAT8iTnWwBKgTaPyQmFxkjK1YJ8uxjQTyl6N7lhN_W-OsepTPo4VjFUX87OLys3dtVq2HlMcaja3X74rv4cuz702FVLl9qCDzkd5qfkUXBDxmeH95R8_3hxs7ys119Xn5Zn69pJ0FNNA28RGyGM0dwIHShDwVF6p3mQ4IxRElvtGyEb6ZVjKBWXPHSNVFCW56fkzZx7l-L9FvNkN332OAxuxLjNVoFhWlFW4Mt_4G3cprHsZhlVWguloaC3M_Ip5pww2LvUb1zaWQp237I9tlzsi0Pgtt1g95ecay3g1QG47N0Qkht9n49OU0Hl_oB6Vn2e8Nfx16WftlFcSXtzdW1_LK-ulV6vLC3-9eydz39O-H-93wwNmxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217884780</pqid></control><display><type>article</type><title>Electrocatalytic Detection of NADH and Glycerol by NAD+-Modified Carbon Electrodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Álvarez-González, M. Isabel ; Saidman, Silvana B ; Lobo-Castañón, M. Jesús ; Miranda-Ordieres, Arturo J ; Tuñón-Blanco, Paulino</creator><creatorcontrib>Álvarez-González, M. Isabel ; Saidman, Silvana B ; Lobo-Castañón, M. Jesús ; Miranda-Ordieres, Arturo J ; Tuñón-Blanco, Paulino</creatorcontrib><description>The electrochemical oxidation of the adenine moiety in NAD+ and other adenine nucleotides at carbon paste electrodes gives rise to redox-active products which strongly adsorb on the electrode surface. Carbon paste electrodes modified with the oxidation products of NAD+ show excellent electrocatalytic activity toward NADH oxidation, reducing its overpotential by about 400 mV. The rate constant for the catalytic oxidation of NADH, determined by rotating disk electrode measurements and extrapolation to zero concentration of NADH, was found to be 2.5 × 105 M-1 s-1. The catalytic oxidation current allows the amperometric detection of NADH at an applied potential of +50 mV (Ag/AgCl) with a detection limit of 4.0 × 10-7 M and linear response up to 1.0 × 10-5 M NADH. These modified electrodes can be used as amperometric transducers in the design of biosensors based on coupled dehydrogenase enzymes and, in fact, we have designed an amperometric biosensor for glycerol based on the glycerol dehydrogenase (GlDH) system. The enzyme GlDH and its cofactor NAD+ were co-immobilized in a carbon paste electrode using an electropolymerized layer of nonconducting poly(o-phenylenediamine) (PPD). After partial oxidation of the immobilized NAD+, the modified electrode allows the amperometric detection of the NADH enzymatically obtained at applied potential above 0 V (Ag/AgCl). The resulting biosensor shows a fast and linear response to glycerol within the concentration range of 1.0 × 10-6−1.0 × 10-4 M with a detection limit of 4.3 × 10-7 M. The amperometric response remains stable for at least 3 days. The biosensor was applied to the determination of glycerol in a plant-extract syrup, with results in good agreement with those for the standard spectrophotometric method.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac9908344</identifier><identifier>PMID: 10695137</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Carbon ; Carbon - chemistry ; Catalysis ; Chemical reactions ; Chemistry ; Electrodes ; Electrons ; Enzymes ; Feasibility Studies ; Fundamental and applied biological sciences. Psychology ; Glycerol - analysis ; Methods. Procedures. Technologies ; NAD - analysis ; NAD - chemistry ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Plant Extracts - chemistry ; Various methods and equipments</subject><ispartof>Analytical chemistry (Washington), 2000-02, Vol.72 (3), p.520-527</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 1, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a508t-1f3bee6449983948f12e43e5ca83f50a9975eb8c64565c7a2e57353fd65705133</citedby><cites>FETCH-LOGICAL-a508t-1f3bee6449983948f12e43e5ca83f50a9975eb8c64565c7a2e57353fd65705133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=814153$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10695137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Álvarez-González, M. Isabel</creatorcontrib><creatorcontrib>Saidman, Silvana B</creatorcontrib><creatorcontrib>Lobo-Castañón, M. Jesús</creatorcontrib><creatorcontrib>Miranda-Ordieres, Arturo J</creatorcontrib><creatorcontrib>Tuñón-Blanco, Paulino</creatorcontrib><title>Electrocatalytic Detection of NADH and Glycerol by NAD+-Modified Carbon Electrodes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The electrochemical oxidation of the adenine moiety in NAD+ and other adenine nucleotides at carbon paste electrodes gives rise to redox-active products which strongly adsorb on the electrode surface. Carbon paste electrodes modified with the oxidation products of NAD+ show excellent electrocatalytic activity toward NADH oxidation, reducing its overpotential by about 400 mV. The rate constant for the catalytic oxidation of NADH, determined by rotating disk electrode measurements and extrapolation to zero concentration of NADH, was found to be 2.5 × 105 M-1 s-1. The catalytic oxidation current allows the amperometric detection of NADH at an applied potential of +50 mV (Ag/AgCl) with a detection limit of 4.0 × 10-7 M and linear response up to 1.0 × 10-5 M NADH. These modified electrodes can be used as amperometric transducers in the design of biosensors based on coupled dehydrogenase enzymes and, in fact, we have designed an amperometric biosensor for glycerol based on the glycerol dehydrogenase (GlDH) system. The enzyme GlDH and its cofactor NAD+ were co-immobilized in a carbon paste electrode using an electropolymerized layer of nonconducting poly(o-phenylenediamine) (PPD). After partial oxidation of the immobilized NAD+, the modified electrode allows the amperometric detection of the NADH enzymatically obtained at applied potential above 0 V (Ag/AgCl). The resulting biosensor shows a fast and linear response to glycerol within the concentration range of 1.0 × 10-6−1.0 × 10-4 M with a detection limit of 4.3 × 10-7 M. The amperometric response remains stable for at least 3 days. The biosensor was applied to the determination of glycerol in a plant-extract syrup, with results in good agreement with those for the standard spectrophotometric method.</description><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Feasibility Studies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol - analysis</subject><subject>Methods. Procedures. Technologies</subject><subject>NAD - analysis</subject><subject>NAD - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Plant Extracts - chemistry</subject><subject>Various methods and equipments</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpl0F1rFDEUBuAgil2rF_4BGRQFkdGTr0lyWbZ1K6xabPU2ZDInMHV20iaz4P57s8yyil4FTh5eznkJeU7hPQVGPzhvDGguxAOyoJJB3WjNHpIFAPCaKYAT8iTnWwBKgTaPyQmFxkjK1YJ8uxjQTyl6N7lhN_W-OsepTPo4VjFUX87OLys3dtVq2HlMcaja3X74rv4cuz702FVLl9qCDzkd5qfkUXBDxmeH95R8_3hxs7ys119Xn5Zn69pJ0FNNA28RGyGM0dwIHShDwVF6p3mQ4IxRElvtGyEb6ZVjKBWXPHSNVFCW56fkzZx7l-L9FvNkN332OAxuxLjNVoFhWlFW4Mt_4G3cprHsZhlVWguloaC3M_Ip5pww2LvUb1zaWQp237I9tlzsi0Pgtt1g95ecay3g1QG47N0Qkht9n49OU0Hl_oB6Vn2e8Nfx16WftlFcSXtzdW1_LK-ulV6vLC3-9eydz39O-H-93wwNmxM</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Álvarez-González, M. Isabel</creator><creator>Saidman, Silvana B</creator><creator>Lobo-Castañón, M. Jesús</creator><creator>Miranda-Ordieres, Arturo J</creator><creator>Tuñón-Blanco, Paulino</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000201</creationdate><title>Electrocatalytic Detection of NADH and Glycerol by NAD+-Modified Carbon Electrodes</title><author>Álvarez-González, M. Isabel ; Saidman, Silvana B ; Lobo-Castañón, M. Jesús ; Miranda-Ordieres, Arturo J ; Tuñón-Blanco, Paulino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a508t-1f3bee6449983948f12e43e5ca83f50a9975eb8c64565c7a2e57353fd65705133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Feasibility Studies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol - analysis</topic><topic>Methods. Procedures. Technologies</topic><topic>NAD - analysis</topic><topic>NAD - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Plant Extracts - chemistry</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Álvarez-González, M. Isabel</creatorcontrib><creatorcontrib>Saidman, Silvana B</creatorcontrib><creatorcontrib>Lobo-Castañón, M. Jesús</creatorcontrib><creatorcontrib>Miranda-Ordieres, Arturo J</creatorcontrib><creatorcontrib>Tuñón-Blanco, Paulino</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Álvarez-González, M. Isabel</au><au>Saidman, Silvana B</au><au>Lobo-Castañón, M. Jesús</au><au>Miranda-Ordieres, Arturo J</au><au>Tuñón-Blanco, Paulino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytic Detection of NADH and Glycerol by NAD+-Modified Carbon Electrodes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2000-02-01</date><risdate>2000</risdate><volume>72</volume><issue>3</issue><spage>520</spage><epage>527</epage><pages>520-527</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The electrochemical oxidation of the adenine moiety in NAD+ and other adenine nucleotides at carbon paste electrodes gives rise to redox-active products which strongly adsorb on the electrode surface. Carbon paste electrodes modified with the oxidation products of NAD+ show excellent electrocatalytic activity toward NADH oxidation, reducing its overpotential by about 400 mV. The rate constant for the catalytic oxidation of NADH, determined by rotating disk electrode measurements and extrapolation to zero concentration of NADH, was found to be 2.5 × 105 M-1 s-1. The catalytic oxidation current allows the amperometric detection of NADH at an applied potential of +50 mV (Ag/AgCl) with a detection limit of 4.0 × 10-7 M and linear response up to 1.0 × 10-5 M NADH. These modified electrodes can be used as amperometric transducers in the design of biosensors based on coupled dehydrogenase enzymes and, in fact, we have designed an amperometric biosensor for glycerol based on the glycerol dehydrogenase (GlDH) system. The enzyme GlDH and its cofactor NAD+ were co-immobilized in a carbon paste electrode using an electropolymerized layer of nonconducting poly(o-phenylenediamine) (PPD). After partial oxidation of the immobilized NAD+, the modified electrode allows the amperometric detection of the NADH enzymatically obtained at applied potential above 0 V (Ag/AgCl). The resulting biosensor shows a fast and linear response to glycerol within the concentration range of 1.0 × 10-6−1.0 × 10-4 M with a detection limit of 4.3 × 10-7 M. The amperometric response remains stable for at least 3 days. The biosensor was applied to the determination of glycerol in a plant-extract syrup, with results in good agreement with those for the standard spectrophotometric method.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>10695137</pmid><doi>10.1021/ac9908344</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2000-02, Vol.72 (3), p.520-527
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70928712
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biological and medical sciences
Biosensing Techniques - methods
Biosensors
Biotechnology
Carbon
Carbon - chemistry
Catalysis
Chemical reactions
Chemistry
Electrodes
Electrons
Enzymes
Feasibility Studies
Fundamental and applied biological sciences. Psychology
Glycerol - analysis
Methods. Procedures. Technologies
NAD - analysis
NAD - chemistry
Oxidation-Reduction
Oxidoreductases - chemistry
Plant Extracts - chemistry
Various methods and equipments
title Electrocatalytic Detection of NADH and Glycerol by NAD+-Modified Carbon Electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytic%20Detection%20of%20NADH%20and%20Glycerol%20by%20NAD+-Modified%20Carbon%20Electrodes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=%C3%81lvarez-Gonz%C3%A1lez,%20M.%20Isabel&rft.date=2000-02-01&rft.volume=72&rft.issue=3&rft.spage=520&rft.epage=527&rft.pages=520-527&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac9908344&rft_dat=%3Cproquest_cross%3E70928712%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a508t-1f3bee6449983948f12e43e5ca83f50a9975eb8c64565c7a2e57353fd65705133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217884780&rft_id=info:pmid/10695137&rfr_iscdi=true