Loading…
Is pharmacological neuroprotection dependent on reduced glutamate release?
The aim of this study was to determinate the possible role of the ionotropic glutamate receptor in the expression of irreversible electrophysiological changes induced by in vitro ischemia and to test whether the neuroprotective action of various neurotransmitter agonists and drugs of clinical intere...
Saved in:
Published in: | Stroke (1970) 2000-03, Vol.31 (3), p.766-773 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study was to determinate the possible role of the ionotropic glutamate receptor in the expression of irreversible electrophysiological changes induced by in vitro ischemia and to test whether the neuroprotective action of various neurotransmitter agonists and drugs of clinical interest is related to a presynaptic inhibitory action at glutamatergic synapses.
Intracellular and extracellular recordings have been performed in a rat corticostriatal slice preparation. Different pharmacological compounds have been tested on corticostriatal glutamatergic transmission in control conditions and in an in vitro model of ischemia (oxygen and glucose deprivation).
In vitro ischemia lasting 10 minutes produced an irreversible loss of the field potential recorded from striatal slices after cortical stimulation. Preincubation of the slices with 3 micromol/L 6-cyano-7-nitroquinoxaline-2,3-dione (an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid [AMPA] receptor antagonist) allowed a significant recovery of the field potential amplitude (P0.05, n=7). Bath application of 3 mmol/L glutamate for 5 minutes produced a complete but reversible inhibition of the field potential amplitude. When a similar application was coupled with a brief period of ischemia (5 minutes), which produced, per se, only a transient inhibition of the field potential, it caused an irreversible loss of this parameter. We also tested the possible neuroprotective effect of neurotransmitter agonists reducing the release of glutamate from corticostriatal terminals. Agonists acting on purinergic (adenosine), muscarinic (oxotremorine), and metabotropic glutamate receptors (L-serine o-phosphate [L-SOP]) significantly (P |
---|---|
ISSN: | 0039-2499 1524-4628 |
DOI: | 10.1161/01.str.31.3.766 |