Loading…

Urothelial pathophysiological changes in feline interstitial cystitis: a human model

Unique barrier properties of the urothelial surface membrane permit urine storage. Interstitial cystitis causes disabling dysuria, and frequency. Similarly, feline interstitial cystitis (FIC) occurs in cats. These studies define the permeability and structural properties of normal and FIC urothelium...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Renal physiology 2000-04, Vol.278 (4), p.F540-F553
Main Authors: Lavelle, J P, Meyers, S A, Ruiz, W G, Buffington, C A, Zeidel, M L, Apodaca, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unique barrier properties of the urothelial surface membrane permit urine storage. Interstitial cystitis causes disabling dysuria, and frequency. Similarly, feline interstitial cystitis (FIC) occurs in cats. These studies define the permeability and structural properties of normal and FIC urothelium. To determine the effects of bladder filling, groups were studied before and after hydrodistention. Normal urothelium with or without hydrodistention exhibited high transepithelial resistances (TER) and low water and urea permeabilities, resembling other species. Fluorescence confocal microscopy revealed localization of the marker AE-31 to the apical surface of all umbrella cells in normal urothelium, with the tight junction protein ZO-1 localized to tight junctions. Scanning and transmission electron microscopy revealed uniform distribution of luminal cells with characteristic apical membrane and tight junction morphology. Urothelium in FIC animals displayed reduced TER and increased water and urea permeability following hydrodistention. Structural studies in FIC revealed denuded urothelium, with appearance of AE-31 in underlying epithelial cells. The results demonstrate severe epithelial damage and dysfunction in FIC and suggest novel approaches toward examining the etiology and therapy of IC.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.2000.278.4.f540