Loading…

Phosphoaminoglycosides Inhibit SWI2/SNF2 Family DNA-Dependent Molecular Motor Domains

Members of the SWI2/SNF2 family of proteins participate in an array of nucleic acid metabolic functions, including chromatin remodeling and transcription. The present studies identify a novel strategy to specifically inhibit the functional DNA-dependent adenosinetriphosphatase (ATPase) motor domain...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2000-04, Vol.39 (15), p.4358-4365
Main Authors: Muthuswami, Rohini, Mesner, Larry D, Wang, Dongyan, Hill, David A, Imbalzano, Anthony N, Hockensmith, Joel W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Members of the SWI2/SNF2 family of proteins participate in an array of nucleic acid metabolic functions, including chromatin remodeling and transcription. The present studies identify a novel strategy to specifically inhibit the functional DNA-dependent adenosinetriphosphatase (ATPase) motor domain common to SWI2/SNF2 family members. We have identified preparations of phosphoaminoglycosides, which are natural products of aminoglycoside-resistant bacteria, as inhibitors of the in vitro activities of three SWI2/SNF2 family members. These compounds inhibit the ATPase activity of the active DNA-dependent ATPase A domain (ADAAD) by competing with respect to DNA and thus have no effect on DNA-independent ATPases or on RNA-dependent ATPases. Within the superfamily of DNA-dependent ATPases, these compounds are most potent toward SWI2/SNF2 family members and less potent toward other DNA-dependent ATPases. We demonstrate that it is feasible to target DNA-dependent ATPases of a particular type without affecting the function of other ATPases. As the SWI2/SNF2 proteins have been proposed to function in all aspects of DNA metabolism, this paper provides an archetype for development of DNA metabolic inhibitors.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi992503r