Loading…
Involvement of capsaicin-sensitive sensory neurons in stress-induced gastroduodenal mucosal injury in rats
The pathogenesis of stress-induced gastroduodenal mucosal injury is complex and incompletely understood. The aim of this investigation was to examine the involvement of gastric and duodenal capsaicin-sensitive neurons in mucosal damage associated with water-restraint stress (WRS) in rats. Following...
Saved in:
Published in: | Digestive diseases and sciences 2000-04, Vol.45 (4), p.830-836 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The pathogenesis of stress-induced gastroduodenal mucosal injury is complex and incompletely understood. The aim of this investigation was to examine the involvement of gastric and duodenal capsaicin-sensitive neurons in mucosal damage associated with water-restraint stress (WRS) in rats. Following WRS, gastroduodenal mucosal injury was quantitated by macroscopic and microscopic methods. Calcitonin gene-related peptide (CGRP) content was measured by radioimmunoassay. WRS-induced mucosal erosive injury in the stomach and duodenum (40.9 +/- 4.2 and 5.1 +/- 0.6 mm2, respectively) was reduced significantly (by 88% and 67%, respectively) by acute intragastric capsaicin administration prior to WRS. In contrast, sensory denervation by chronic capsaicin significantly increased the area of gastric injury and duodenal damage. WRS alone caused a significant reduction (by 52% and -35%, respectively) in gastric and duodenal CGRP content, which was prevented by acute capsaicin treatment. The data suggest that gastric and duodenal sensory neurons and CGRP are involved in the pathogenesis of stress-induced mucosal injury to the stomach and duodenum. |
---|---|
ISSN: | 0163-2116 1573-2568 |
DOI: | 10.1023/A:1005424617101 |