Loading…

VAP-A Binds Promiscuously to both v- and tSNAREs

Proteins that bind to SNAREs may regulate their function. One such protein, VAP-33, was first discovered in Aplysia californica and has two mammalian homologues, VAP-A and VAP-B. VAP-A has been implicated in vesicle targeting to the plasma membrane based on its location in polarized cells and its ab...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2001-08, Vol.286 (3), p.616-621
Main Authors: Weir, M.Lynn, Xie, Hong, Klip, Amira, Trimble, William S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proteins that bind to SNAREs may regulate their function. One such protein, VAP-33, was first discovered in Aplysia californica and has two mammalian homologues, VAP-A and VAP-B. VAP-A has been implicated in vesicle targeting to the plasma membrane based on its location in polarized cells and its ability to bind VAMP in vitro. Here, we demonstrate that VAP-A is a widely expressed resident of the ER/Golgi intermediate compartment in COS-7 cells. Moreover, we demonstrate that VAMP-binding and VAP-dimerization require both the N- and C-terminal domains of VAP-A and also that VAP-A binds to a wide range of SNAREs and fusion-related proteins including syntaxin 1A, rbet1, rsec22, αSNAP, and NSF. Together, these results suggest that VAP-A is not a regulator of a specific VAMP, but rather may play a more general role in SNARE-mediated vesicle traffic between the ER and Golgi in nonpolarized cells.
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.2001.5437