Loading…

Multiple-quantum MAS NMR of quadrupolar nuclei. Do five-, seven- and nine-quantum experiments yield higher resolution than the three-quantum experiment?

The question of whether or not higher-order (five-, seven- and nine-quantum) multiple-quantum magic angle spinning (MQMAS) experiments yield isotropic NMR spectra of half-integer quadrupolar nuclei with higher resolution than the basic three-quantum MAS experiment is examined. The frequency dispersi...

Full description

Saved in:
Bibliographic Details
Published in:Solid state nuclear magnetic resonance 2000-06, Vol.16 (3), p.203-215
Main Authors: Pike, Kevin J, Malde, Reena P, Ashbrook, Sharon E, McManus, Jamie, Wimperis, Stephen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The question of whether or not higher-order (five-, seven- and nine-quantum) multiple-quantum magic angle spinning (MQMAS) experiments yield isotropic NMR spectra of half-integer quadrupolar nuclei with higher resolution than the basic three-quantum MAS experiment is examined. The frequency dispersion is shown theoretically to be greatly increased in higher-order MQMAS spectra, but it is argued that whether or not this translates into an increase in resolution depends upon the ratio of the homogeneous to inhomogeneous contributions to the isotropic linewidth. Experimentally, it is demonstrated using three-, five- and seven-quantum 45Sc MAS NMR and three- and five-quantum 27Al MAS NMR of crystalline samples that higher-order MQMAS experiments can yield a real and useful increase in resolution but that, owing to the presence of inhomogeneous broadening in the isotropic spectra, this increase is less than the theoretically predicted value. A number of practical issues relating to resolution in MQMAS NMR are also pointed out.
ISSN:0926-2040
1527-3326
DOI:10.1016/S0926-2040(00)00081-3