Loading…

The infrared fundamental intensities and polar tensor of CF4

Atomic polar tensors of carbon tetrafluoride are calculated from experimental fundamental infrared intensities measured by several research groups. Quantum chemical calculations using a 6-311 + + G(3d, 3p) basis set at the Hartree-Fock, Möller-Plesset 2 and Density Functional Theory (B3LYP) levels a...

Full description

Saved in:
Bibliographic Details
Published in:Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2000-06, Vol.56A (7), p.1329-1335
Main Authors: de Oliveira, A E, Haiduke, R L, Bruns, R E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atomic polar tensors of carbon tetrafluoride are calculated from experimental fundamental infrared intensities measured by several research groups. Quantum chemical calculations using a 6-311 + + G(3d, 3p) basis set at the Hartree-Fock, Möller-Plesset 2 and Density Functional Theory (B3LYP) levels are used to resolve the sign ambiguities of the dipole moment derivatives. The resulting carbon mean dipole moment derivative, pC = 2.051 e, is in excellent agreement with values estimated by a MP2/6-311 + + G(3d, 3p) theoretical calculation, 2.040 e, and by an empirical electronegativity model, 2.016 e. The pC value determined here is also in excellent agreement with the one obtained from the CF4 1s carbon ionization energy using a simple potential model, 2.059 e. Crawford's G intensity sum rule applied to the fundamental intensities of CH4, CH3F, CH2F2 and CHF3 results in a prediction of a 1249 km mol(-1) intensity sum for CF4 in good agreement with the experimental values of 1328 +/- 37.9, 1208.0 +/- 54.4 and 1194.8 +/- 7.4 km mol(-1) reported in the literature.
ISSN:1386-1425
DOI:10.1016/S1386-1425(99)00230-9