Loading…
The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result
The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite...
Saved in:
Published in: | Neural computation 2000-05, Vol.12 (5), p.1045-1055 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3 |
container_end_page | 1055 |
container_issue | 5 |
container_start_page | 1045 |
container_title | Neural computation |
container_volume | 12 |
creator | Knight, B. W. Omurtag, A. Sirovich, L. |
description | The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms. |
doi_str_mv | 10.1162/089976600300015493 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71261149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71261149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3</originalsourceid><addsrcrecordid>eNqFkU9vFCEYh4mxsWv1C3gwHIy3aV9gGBhvm2ZXTZpqmpp4IwwDlmZmmMLgv08v625iExs9weH5PS_8XoReEDglpKFnINtWNA0AAwDC65Y9QivCGVRSys-P0WoHVIUQx-hpSreFagjwJ-iYQAtcglghfX1j8XqeY9DmBgeHNb60OYYJfwxzHvTiy3Xro5--4Cu9WLyE38g3vLnLfvBd9Hl8g9cT3nzXZsFFF6JdvNEDvrIpD8szdOT0kOzzw3mCPm031-fvqosPb9-fry8qw4EvVUOoaGtnNBWip51lvRNd37GGcUGsBcdASgd1rS2nLYOGadl2TnZgpHbQsxP0eu8tf7nLNi1q9MnYYdCTDTkpQWhDSCnpfyCRwMpQXkC6B00MKUXr1Bz9qOMPRUDtNqD-3kAJvTzYczfa_l5kX3kBXh0AnUpLLurJ-PSHq4G1YvfK0z02-kXdhhynUt6_B28fCEzWhK-Eeq4YUMa5okBJcRSD-unnh0S_AOLIrgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18033575</pqid></control><display><type>article</type><title>The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result</title><source>MIT Press Journals</source><creator>Knight, B. W. ; Omurtag, A. ; Sirovich, L.</creator><creatorcontrib>Knight, B. W. ; Omurtag, A. ; Sirovich, L.</creatorcontrib><description>The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/089976600300015493</identifier><identifier>PMID: 10905807</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animal and plant ecology ; Animal, plant and microbial ecology ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control theory. Systems ; Demecology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Models. Methods ; Modelling and identification ; Models, Neurological ; Neurons - physiology ; Population Dynamics ; Synapses - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Neural computation, 2000-05, Vol.12 (5), p.1045-1055</ispartof><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3</citedby><cites>FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/089976600300015493$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1403979$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10905807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knight, B. W.</creatorcontrib><creatorcontrib>Omurtag, A.</creatorcontrib><creatorcontrib>Sirovich, L.</creatorcontrib><title>The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms.</description><subject>Algorithms</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control theory. Systems</subject><subject>Demecology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Models. Methods</subject><subject>Modelling and identification</subject><subject>Models, Neurological</subject><subject>Neurons - physiology</subject><subject>Population Dynamics</subject><subject>Synapses - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vFCEYh4mxsWv1C3gwHIy3aV9gGBhvm2ZXTZpqmpp4IwwDlmZmmMLgv08v625iExs9weH5PS_8XoReEDglpKFnINtWNA0AAwDC65Y9QivCGVRSys-P0WoHVIUQx-hpSreFagjwJ-iYQAtcglghfX1j8XqeY9DmBgeHNb60OYYJfwxzHvTiy3Xro5--4Cu9WLyE38g3vLnLfvBd9Hl8g9cT3nzXZsFFF6JdvNEDvrIpD8szdOT0kOzzw3mCPm031-fvqosPb9-fry8qw4EvVUOoaGtnNBWip51lvRNd37GGcUGsBcdASgd1rS2nLYOGadl2TnZgpHbQsxP0eu8tf7nLNi1q9MnYYdCTDTkpQWhDSCnpfyCRwMpQXkC6B00MKUXr1Bz9qOMPRUDtNqD-3kAJvTzYczfa_l5kX3kBXh0AnUpLLurJ-PSHq4G1YvfK0z02-kXdhhynUt6_B28fCEzWhK-Eeq4YUMa5okBJcRSD-unnh0S_AOLIrgI</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Knight, B. W.</creator><creator>Omurtag, A.</creator><creator>Sirovich, L.</creator><general>MIT Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result</title><author>Knight, B. W. ; Omurtag, A. ; Sirovich, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control theory. Systems</topic><topic>Demecology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Models. Methods</topic><topic>Modelling and identification</topic><topic>Models, Neurological</topic><topic>Neurons - physiology</topic><topic>Population Dynamics</topic><topic>Synapses - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, B. W.</creatorcontrib><creatorcontrib>Omurtag, A.</creatorcontrib><creatorcontrib>Sirovich, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, B. W.</au><au>Omurtag, A.</au><au>Sirovich, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>12</volume><issue>5</issue><spage>1045</spage><epage>1055</epage><pages>1045-1055</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>10905807</pmid><doi>10.1162/089976600300015493</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2000-05, Vol.12 (5), p.1045-1055 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_miscellaneous_71261149 |
source | MIT Press Journals |
subjects | Algorithms Animal and plant ecology Animal, plant and microbial ecology Applied sciences Artificial intelligence Biological and medical sciences Computer science control theory systems Connectionism. Neural networks Control theory. Systems Demecology Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects General aspects. Models. Methods Modelling and identification Models, Neurological Neurons - physiology Population Dynamics Synapses - physiology Vertebrates: nervous system and sense organs |
title | The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Approach%20of%20a%20Neuron%20Population%20Firing%20Rate%20to%20a%20New%20Equilibrium:%20An%20Exact%20Theoretical%20Result&rft.jtitle=Neural%20computation&rft.au=Knight,%20B.%20W.&rft.date=2000-05-01&rft.volume=12&rft.issue=5&rft.spage=1045&rft.epage=1055&rft.pages=1045-1055&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/089976600300015493&rft_dat=%3Cproquest_cross%3E71261149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18033575&rft_id=info:pmid/10905807&rfr_iscdi=true |