Loading…

The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result

The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation 2000-05, Vol.12 (5), p.1045-1055
Main Authors: Knight, B. W., Omurtag, A., Sirovich, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3
cites cdi_FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3
container_end_page 1055
container_issue 5
container_start_page 1045
container_title Neural computation
container_volume 12
creator Knight, B. W.
Omurtag, A.
Sirovich, L.
description The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms.
doi_str_mv 10.1162/089976600300015493
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71261149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71261149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3</originalsourceid><addsrcrecordid>eNqFkU9vFCEYh4mxsWv1C3gwHIy3aV9gGBhvm2ZXTZpqmpp4IwwDlmZmmMLgv08v625iExs9weH5PS_8XoReEDglpKFnINtWNA0AAwDC65Y9QivCGVRSys-P0WoHVIUQx-hpSreFagjwJ-iYQAtcglghfX1j8XqeY9DmBgeHNb60OYYJfwxzHvTiy3Xro5--4Cu9WLyE38g3vLnLfvBd9Hl8g9cT3nzXZsFFF6JdvNEDvrIpD8szdOT0kOzzw3mCPm031-fvqosPb9-fry8qw4EvVUOoaGtnNBWip51lvRNd37GGcUGsBcdASgd1rS2nLYOGadl2TnZgpHbQsxP0eu8tf7nLNi1q9MnYYdCTDTkpQWhDSCnpfyCRwMpQXkC6B00MKUXr1Bz9qOMPRUDtNqD-3kAJvTzYczfa_l5kX3kBXh0AnUpLLurJ-PSHq4G1YvfK0z02-kXdhhynUt6_B28fCEzWhK-Eeq4YUMa5okBJcRSD-unnh0S_AOLIrgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18033575</pqid></control><display><type>article</type><title>The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result</title><source>MIT Press Journals</source><creator>Knight, B. W. ; Omurtag, A. ; Sirovich, L.</creator><creatorcontrib>Knight, B. W. ; Omurtag, A. ; Sirovich, L.</creatorcontrib><description>The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/089976600300015493</identifier><identifier>PMID: 10905807</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animal and plant ecology ; Animal, plant and microbial ecology ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control theory. Systems ; Demecology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Models. Methods ; Modelling and identification ; Models, Neurological ; Neurons - physiology ; Population Dynamics ; Synapses - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Neural computation, 2000-05, Vol.12 (5), p.1045-1055</ispartof><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3</citedby><cites>FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/089976600300015493$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1403979$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10905807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knight, B. W.</creatorcontrib><creatorcontrib>Omurtag, A.</creatorcontrib><creatorcontrib>Sirovich, L.</creatorcontrib><title>The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms.</description><subject>Algorithms</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control theory. Systems</subject><subject>Demecology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Models. Methods</subject><subject>Modelling and identification</subject><subject>Models, Neurological</subject><subject>Neurons - physiology</subject><subject>Population Dynamics</subject><subject>Synapses - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vFCEYh4mxsWv1C3gwHIy3aV9gGBhvm2ZXTZpqmpp4IwwDlmZmmMLgv08v625iExs9weH5PS_8XoReEDglpKFnINtWNA0AAwDC65Y9QivCGVRSys-P0WoHVIUQx-hpSreFagjwJ-iYQAtcglghfX1j8XqeY9DmBgeHNb60OYYJfwxzHvTiy3Xro5--4Cu9WLyE38g3vLnLfvBd9Hl8g9cT3nzXZsFFF6JdvNEDvrIpD8szdOT0kOzzw3mCPm031-fvqosPb9-fry8qw4EvVUOoaGtnNBWip51lvRNd37GGcUGsBcdASgd1rS2nLYOGadl2TnZgpHbQsxP0eu8tf7nLNi1q9MnYYdCTDTkpQWhDSCnpfyCRwMpQXkC6B00MKUXr1Bz9qOMPRUDtNqD-3kAJvTzYczfa_l5kX3kBXh0AnUpLLurJ-PSHq4G1YvfK0z02-kXdhhynUt6_B28fCEzWhK-Eeq4YUMa5okBJcRSD-unnh0S_AOLIrgI</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Knight, B. W.</creator><creator>Omurtag, A.</creator><creator>Sirovich, L.</creator><general>MIT Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result</title><author>Knight, B. W. ; Omurtag, A. ; Sirovich, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control theory. Systems</topic><topic>Demecology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Models. Methods</topic><topic>Modelling and identification</topic><topic>Models, Neurological</topic><topic>Neurons - physiology</topic><topic>Population Dynamics</topic><topic>Synapses - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, B. W.</creatorcontrib><creatorcontrib>Omurtag, A.</creatorcontrib><creatorcontrib>Sirovich, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, B. W.</au><au>Omurtag, A.</au><au>Sirovich, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>12</volume><issue>5</issue><spage>1045</spage><epage>1055</epage><pages>1045-1055</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>10905807</pmid><doi>10.1162/089976600300015493</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2000-05, Vol.12 (5), p.1045-1055
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_miscellaneous_71261149
source MIT Press Journals
subjects Algorithms
Animal and plant ecology
Animal, plant and microbial ecology
Applied sciences
Artificial intelligence
Biological and medical sciences
Computer science
control theory
systems
Connectionism. Neural networks
Control theory. Systems
Demecology
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Models. Methods
Modelling and identification
Models, Neurological
Neurons - physiology
Population Dynamics
Synapses - physiology
Vertebrates: nervous system and sense organs
title The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Approach%20of%20a%20Neuron%20Population%20Firing%20Rate%20to%20a%20New%20Equilibrium:%20An%20Exact%20Theoretical%20Result&rft.jtitle=Neural%20computation&rft.au=Knight,%20B.%20W.&rft.date=2000-05-01&rft.volume=12&rft.issue=5&rft.spage=1045&rft.epage=1055&rft.pages=1045-1055&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/089976600300015493&rft_dat=%3Cproquest_cross%3E71261149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-612794fca277d2be3df7bdb363571ee0f3088f044ae5293063a89bf8b0c8af0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18033575&rft_id=info:pmid/10905807&rfr_iscdi=true