Loading…
Oxygen-induced pulmonary injury in gamma-glutamyl transpeptidase-deficient mice
We used mice with a targeted disruption in g-glutamyl transpeptidase (GGT-deficient mice) to study the role of glutathione (GSH) in protection against oxygen-induced lung injury. These mice had reduced levels of lung GSH and restricted ability to synthesize GSH because of low levels of cysteine. Whe...
Saved in:
Published in: | Lung 2001, Vol.179 (5), p.319-330 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We used mice with a targeted disruption in g-glutamyl transpeptidase (GGT-deficient mice) to study the role of glutathione (GSH) in protection against oxygen-induced lung injury. These mice had reduced levels of lung GSH and restricted ability to synthesize GSH because of low levels of cysteine. When GGT-deficient mice were exposed to 80% oxygen, they developed diffuse pulmonary injury and died within eight days. Ten of 12 wild-type mice were alive after 18 days. Administration of N-acetylcysteine (NAC) to GGT-deficient mice corrected GSH values and prevented the development of severe pulmonary injury and death. Oxygen exposure induced an increase in lung GSH levels in both wild-type and GGT-deficient mice, but induced levels in the mutant mice were |
---|---|
ISSN: | 0341-2040 |
DOI: | 10.1007/s004080000071 |