Loading…

Spatial and Temporal Pathway for Assembly and Constriction of the Contractile Ring in Fission Yeast Cytokinesis

Microscopy of fluorescent fusion proteins and genetic dependencies show that fission yeast assemble and constrict a cytokinetic contractile ring in a precisely timed, sequential order. More than 90 min prior to separation of the spindle pole bodies (SPB), the anillin-like protein (Mid1p) migrates fr...

Full description

Saved in:
Bibliographic Details
Published in:Developmental cell 2003-11, Vol.5 (5), p.723-734
Main Authors: Wu, Jian-Qiu, Kuhn, Jeffrey R., Kovar, David R., Pollard, Thomas D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microscopy of fluorescent fusion proteins and genetic dependencies show that fission yeast assemble and constrict a cytokinetic contractile ring in a precisely timed, sequential order. More than 90 min prior to separation of the spindle pole bodies (SPB), the anillin-like protein (Mid1p) migrates from the nucleus and specifies a broad band of cortex around the equator as the division site. Between 10 min before and 2 min after SPB separation, conventional myosin-II (Myo2p), IQGAP (Rng2p), PCH protein (Cdc15p), and formin (Cdc12p) join the broad band independent of actin filaments. Over the subsequent 10 min prior to anaphase B, this broad band of proteins condenses into a contractile ring including actin, tropomyosin (Cdc8p), and α-actinin (Ain1p). During anaphase B, unconventional myosin-II (Myp2p) joins the ring followed by the septin (Spn1p). Ring contraction and disassembly begin 37 min after SPB separation. This spatial and temporal hierarchy provides the framework for analysis of molecular mechanisms.
ISSN:1534-5807
1878-1551
DOI:10.1016/S1534-5807(03)00324-1