Loading…

Anaemia stimulates aquaporin 1 expression in the fetal sheep heart

Interstitial fluid fluxes are much greater in the fetus than in the adult, and filtration rates are increased over control in most tissues of the anaemic fetus. Increased capillary filtration may lead to cardiac oedema which, in turn, severely impacts cardiac function. Mechanisms that underlie these...

Full description

Saved in:
Bibliographic Details
Published in:Experimental physiology 2003-11, Vol.88 (6), p.691-698
Main Authors: Jonker, S. S., Davis, L. E., Bilt, J. D. W. van der, Hadder, B., Hohimer, A. R., Giraud, G. D., Thornburg, K. L.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interstitial fluid fluxes are much greater in the fetus than in the adult, and filtration rates are increased over control in most tissues of the anaemic fetus. Increased capillary filtration may lead to cardiac oedema which, in turn, severely impacts cardiac function. Mechanisms that underlie these differences in flux are incompletely understood. One possible mechanism is an increase in capillary water permeability. Therefore, the goal of our study was to determine the level of expression of the water channel aquaporin 1 (AQP1) during cardiac development and in the anaemic fetal sheep heart. Hearts from chronically instrumented anaemic sheep fetuses and hearts from normal early fetal, late fetal, neonatal and adult sheep were used for Northern and Western analyses and immunohistochemistry. We found that AQP1 mRNA levels were lower in the young fetal left ventricle than in the adult left ventricle (P < 0.05). We also found that cardiac AQP1 expression was increased in anaemic fetuses compared to age-matched controls (P < 0.05). Expression of AQP1 in all groups was greatest in the microvascular endothelium. These data suggest that AQP1 plays an important role in the physiological accommodation to fetal anaemia. Experimental Physiology (2003) 88.6, 691-698.
ISSN:0958-0670
1469-445X
DOI:10.1113/eph8802626