Loading…

Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella

Crops expressing Bacillus thuringiensis (Bt) insecticidal Cry proteins are grown on millions of hectares. Recommendations to delay resistance are based on a high expression/refugia strategy that aims to kill resistant heterozygotes and enable some susceptible insects to survive. Leaf-dip bioassays o...

Full description

Saved in:
Bibliographic Details
Published in:Pest management science 2003-11, Vol.59 (11), p.1197-1202
Main Authors: Sayyed, A.H, Schuler, T.H, Wright, D.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Crops expressing Bacillus thuringiensis (Bt) insecticidal Cry proteins are grown on millions of hectares. Recommendations to delay resistance are based on a high expression/refugia strategy that aims to kill resistant heterozygotes and enable some susceptible insects to survive. Leaf-dip bioassays on F1 crosses of Malaysian populations of diamondback moth (Plutella xylostella (L)) showed that Cry1Ac resistance was not fully recessive. The survival of ca 50% of heterozygotes on Bt canola (Brassica napus L) leaves expressing low concentrations of Cry1Ac agreed with a non-fully-recessive model for resistance. Extrapolations based on log dose-logit mortality regressions for heterozygotes using leaf-dip bioassays showed that a relatively high level of expression, of ca 2000 ng Cry1Ac mg-1 total leaf protein, would be required to give 90% mortality to heterozygotes. If high enough levels of expression of Bt toxin to kill heterozygotes cannot be achieved and maintained under field conditions, the effectiveness of the high-dose/refugia strategy would be reduced.
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.754